Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities

被引:2
|
作者
Lopes, Pedro T. P. [1 ]
Roidos, Nikolaos [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Patras, Dept Math, Rion 26504, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 197卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
Semilinear parabolic equations; Maximal regularity; Cahn-Hilliard equation; Manifolds with conical singularities; CONE DIFFERENTIAL-OPERATORS; BOUNDED IMAGINARY POWERS; POROUS-MEDIUM EQUATION; COMPLEX POWERS; SPACES;
D O I
10.1007/s00605-022-01674-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cahn-Hilliard equation on manifolds with conical singularities. For appropriate initial data we show that the solution exists in the maximal L-q-regularity space for all times and becomes instantaneously smooth in space and time, where the maximal L-q-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we provide precise information concerning the asymptotic behavior of the solution close to the conical tips in terms of the local geometry.
引用
收藏
页码:677 / 716
页数:40
相关论文
共 50 条