Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS

被引:59
|
作者
Souard, Florence [1 ,2 ]
Delporte, Cedric [3 ,4 ]
Stoffelen, Piet [5 ]
Thevenot, Etienne A. [6 ]
Noret, Nausicaa [7 ]
Dauvergne, Bastien [2 ,8 ]
Kauffmann, Jean-Michel [8 ]
Van Antwerpen, Pierre [3 ,4 ]
Stevigny, Caroline [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, DPM, F-38000 Grenoble, France
[2] Univ Libre Bruxelles, Fac Pharm, Lab Pharmacognosie Bromatol & Nutr Humaine, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
[3] Univ Libre Bruxelles, Fac Pharm, Plateforme Analyt, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[4] Univ Libre Bruxelles, Fac Pharm, Lab Chim Pharmaceut Organ, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[5] Bot Garden Meise, Nieuwelaan 38, B-1860 Meise, Belgium
[6] MetaboHUB Gif sur Yvette, CEA, LIST, Lab Data Anal & Syst Intelligence, Gif Sur Yvette, France
[7] Univ Libre Bruxelles, Lab Ecol Vegetale & Biogeochim, Campus Plaine,CP 244, B-1050 Brussels, Belgium
[8] Univ Libre Bruxelles, Fac Pharm, Lab Chim Analyt & Instrumentale & Bioelecrochem, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
关键词
Plant metabolomics; Coffea; LC-(HR) MS; Workflow4metabolomics; Caffeine; Ent-kaurane diterpenoid; MASS-SPECTROMETRY; CAFFEINE; ARABICA; CHROMATOGRAPHY; BIOSYNTHESIS; DISCRIMINATION; RUBIACEAE; LEAVES; GENES;
D O I
10.1016/j.foodchem.2017.10.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Coffee bean extracts are consumed all over the world as beverage and there is a growing interest in coffee leaf extracts as food supplements. The wild diversity in Coffea (Rubiaceae) genus is large and could offer new opportunities and challenges. In the present work, a metabolomics approach was implemented to examine leaf chemical composition of 9 Coffea species grown in the same environmental conditions. Leaves were analyzed by LC-HRMS and a comprehensive statistical workflow was designed. It served for univariate hypothesis testing and multivariate modeling by PCA and partial PLS-DA on the Workflow4Metabolomics infrastructure. The first two axes of PCA and PLS-DA describes more than 40% of variances with good values of explained variances. This strategy permitted to investigate the metabolomics data and their relation with botanic and genetic informations. Finally, the identification of several key metabolites for the discrimination between species was further characterized.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [41] Profiling of Organosulfur Compounds in Onions: A Comparative Study between LC-HRMS and DTD-GC-MS
    Gonzalez-de-Peredo, Ana V.
    Maroto, Alicia
    Barbero, Gerardo F.
    Memboeuf, Antony
    CHEMOSENSORS, 2024, 12 (07)
  • [42] LC-HRMS Metabolite Profiling of Lunasia amara Stem Bark and In Silico Study in Breast Cancer Receptors
    Saputra, Agus
    Wientarsih, Ietje
    Rafi, Mohamad
    Sutardi, Lina Noviyanti
    Mariya, Silmi
    INDONESIAN JOURNAL OF PHARMACY, 2024, 35 (01): : 116 - 125
  • [43] Untargeted LC-HRMS-Based Metabolomics for Searching New Biomarkers of Pancreatic Ductal Adenocarcinoma: A Pilot Study
    Rios Peces, Sandra
    Diaz Navarro, Caridad
    Marquez Lopez, Cristina
    Caba, Octavio
    Jimenez-Luna, Cristina
    Melguizo, Consolacion
    Carlos Prados, Jose
    Genilloud, Olga
    Vicente Perez, Francisca
    Perez del Palacio, Jose
    SLAS DISCOVERY, 2017, 22 (04) : 348 - 359
  • [44] Untargeted LC-HRMS Based-Plasma Metabolomics Reveals 3-O-Methyldopa as a New Biomarker of Poor Prognosis in High-Risk Neuroblastoma
    Barco, Sebastiano
    Lavarello, Chiara
    Cangelosi, Davide
    Morini, Martina
    Eva, Alessandra
    Oneto, Luca
    Uva, Paolo
    Tripodi, Gino
    Garaventa, Alberto
    Conte, Massimo
    Petretto, Andrea
    Cangemi, Giuliana
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [45] Investigation of Greek honeys using HR-NMR and LC-HRMS metabolomics, for determination of their geographical, botanical origin and authenticity
    Ringele, Lemus G. B.
    Axiotis, E.
    Katsikis, S.
    Argyropoulou, A.
    Skaltsounis, L. A.
    Halabalaki, M.
    PLANTA MEDICA, 2019, 85 (18) : 1463 - 1463
  • [46] Optimization of metabolite extraction and analytical methods from shrimp intestine for metabolomics profile analysis using LC-HRMS/MS
    Uawisetwathana, Umaporn
    Plaisen, Siwat
    Arayamethakorn, Sopacha
    Jitthiang, Prapatsorn
    Rungrassamee, Wanilada
    METABOLOMICS, 2021, 17 (01)
  • [47] Optimization of metabolite extraction and analytical methods from shrimp intestine for metabolomics profile analysis using LC-HRMS/MS
    Umaporn Uawisetwathana
    Siwat Plaisen
    Sopacha Arayamethakorn
    Prapatsorn Jitthiang
    Wanilada Rungrassamee
    Metabolomics, 2021, 17
  • [48] Biomarker profiling in plants to distinguish between exposure to chlorine gas and bleach using LC-HRMS/MS and chemometrics
    de Bruin-Hoegee, Mirjam
    van der Schans, Marcel J.
    Langenberg, Jan P.
    van Asten, Arian C.
    FORENSIC SCIENCE INTERNATIONAL, 2024, 358
  • [49] LC-HRMS Metabolomics Profiling in Advanced NSCLC Treated with Anti PD-1 Agents. Metabolic Features at Diagnosis and at Response Evaluation
    Ortega Granados, A. L.
    Garcia Verdejo, F. J.
    Cardenas Quesada, N.
    Ruiz Sanjuan, M.
    Diaz Navarro, C.
    De La Torre Cabrera, C.
    Fernandez Navarro, M.
    Perez Chica, G.
    Vicente Perez, F.
    Moreno Jimenez, M. A.
    Luque Caro, N.
    Marquez Lobo, B.
    Jaen Morago, A.
    Duenas Garcia, R.
    Martinez Ortega, E.
    Sanchez Rovira, P.
    Perez Del Palacio, J.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2008 - S2009
  • [50] Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS
    Song, Kwangho
    Oh, Jae-Hyeon
    Lee, Min Young
    Lee, Seok-Geun
    Ha, In Jin
    MOLECULES, 2020, 25 (11):