Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS

被引:59
|
作者
Souard, Florence [1 ,2 ]
Delporte, Cedric [3 ,4 ]
Stoffelen, Piet [5 ]
Thevenot, Etienne A. [6 ]
Noret, Nausicaa [7 ]
Dauvergne, Bastien [2 ,8 ]
Kauffmann, Jean-Michel [8 ]
Van Antwerpen, Pierre [3 ,4 ]
Stevigny, Caroline [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, DPM, F-38000 Grenoble, France
[2] Univ Libre Bruxelles, Fac Pharm, Lab Pharmacognosie Bromatol & Nutr Humaine, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
[3] Univ Libre Bruxelles, Fac Pharm, Plateforme Analyt, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[4] Univ Libre Bruxelles, Fac Pharm, Lab Chim Pharmaceut Organ, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[5] Bot Garden Meise, Nieuwelaan 38, B-1860 Meise, Belgium
[6] MetaboHUB Gif sur Yvette, CEA, LIST, Lab Data Anal & Syst Intelligence, Gif Sur Yvette, France
[7] Univ Libre Bruxelles, Lab Ecol Vegetale & Biogeochim, Campus Plaine,CP 244, B-1050 Brussels, Belgium
[8] Univ Libre Bruxelles, Fac Pharm, Lab Chim Analyt & Instrumentale & Bioelecrochem, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
关键词
Plant metabolomics; Coffea; LC-(HR) MS; Workflow4metabolomics; Caffeine; Ent-kaurane diterpenoid; MASS-SPECTROMETRY; CAFFEINE; ARABICA; CHROMATOGRAPHY; BIOSYNTHESIS; DISCRIMINATION; RUBIACEAE; LEAVES; GENES;
D O I
10.1016/j.foodchem.2017.10.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Coffee bean extracts are consumed all over the world as beverage and there is a growing interest in coffee leaf extracts as food supplements. The wild diversity in Coffea (Rubiaceae) genus is large and could offer new opportunities and challenges. In the present work, a metabolomics approach was implemented to examine leaf chemical composition of 9 Coffea species grown in the same environmental conditions. Leaves were analyzed by LC-HRMS and a comprehensive statistical workflow was designed. It served for univariate hypothesis testing and multivariate modeling by PCA and partial PLS-DA on the Workflow4Metabolomics infrastructure. The first two axes of PCA and PLS-DA describes more than 40% of variances with good values of explained variances. This strategy permitted to investigate the metabolomics data and their relation with botanic and genetic informations. Finally, the identification of several key metabolites for the discrimination between species was further characterized.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [21] Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach
    Yamamoto, Flavia Yoshie
    Perez-Lopez, Carlos
    Lopez-Antia, Ana
    Lacorte, Silvia
    Abessa, Denis Moledo de Souza
    Tauler, Roma
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2023, 415 (25) : 6213 - 6225
  • [22] Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach
    Flávia Yoshie Yamamoto
    Carlos Pérez-López
    Ana Lopez-Antia
    Silvia Lacorte
    Denis Moledo de Souza Abessa
    Romà Tauler
    Analytical and Bioanalytical Chemistry, 2023, 415 : 6213 - 6225
  • [23] Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS
    Hounoum, Blandine Madji
    Blasco, Helene
    Nadal-Desbarats, Lydie
    Dieme, Binta
    Montigny, Frederic
    Andres, Christian R.
    Emond, Patrick
    Mavel, Sylvie
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (29) : 8861 - 8872
  • [24] Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS
    Blandine Madji Hounoum
    Hélène Blasco
    Lydie Nadal-Desbarats
    Binta Diémé
    Frédéric Montigny
    Christian R. Andres
    Patrick Emond
    Sylvie Mavel
    Analytical and Bioanalytical Chemistry, 2015, 407 : 8861 - 8872
  • [25] Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics
    Koulis, Georgios A.
    Tsagkaris, Aristeidis S.
    Aalizadeh, Reza
    Dasenaki, Marilena E.
    Panagopoulou, Eleni I.
    Drivelos, Spyros
    Halagarda, Michal
    Georgiou, Constantinos A.
    Proestos, Charalampos
    Thomaidis, Nikolaos S.
    MOLECULES, 2021, 26 (09):
  • [26] Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software
    Xinsong Du
    Farhad Dastmalchi
    Hao Ye
    Timothy J. Garrett
    Matthew A. Diller
    Mei Liu
    William R. Hogan
    Mathias Brochhausen
    Dominick J. Lemas
    Metabolomics, 19
  • [27] Exploitation of global microbial biodiversity for the discovery of novel cosmeceuticals using LC-HRMS based metabolomics
    Almeida, C.
    Gonzalez-Menendez, V
    Gonzalez, I
    del Palacio, J. P.
    Reyes, F.
    Lemonakis, N.
    Tsafantakis, N.
    Gikas, E.
    Fokialakis, N.
    Genilloud, O.
    PLANTA MEDICA, 2015, 81 (16) : 1488 - 1488
  • [28] Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software
    Du, Xinsong
    Dastmalchi, Farhad
    Ye, Hao
    Garrett, Timothy J.
    Diller, Matthew A.
    Liu, Mei
    Hogan, William R.
    Brochhausen, Mathias
    Lemas, Dominick J.
    METABOLOMICS, 2023, 19 (02)
  • [29] Automated LC-HRMS(/MS) Approach for the Annotation of Fragment Ions Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics
    Neumann, Nora K. N.
    Lehner, Sylvia M.
    Kluger, Bernhard
    Bueschl, Christoph
    Sedelmaier, Karoline
    Lemmens, Marc
    Krska, Rudolf
    Schuhmacher, Rainer
    ANALYTICAL CHEMISTRY, 2014, 86 (15) : 7320 - 7327
  • [30] Study of the occurrence of tropane alkaloids in animal feed using LC-HRMS
    Romera-Torres, Ana
    Romero-Gonzalez, Roberto
    Martinez Vidal, Jose Luis
    Garrido Frenich, Antonia
    ANALYTICAL METHODS, 2018, 10 (27) : 3340 - 3346