Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS

被引:59
|
作者
Souard, Florence [1 ,2 ]
Delporte, Cedric [3 ,4 ]
Stoffelen, Piet [5 ]
Thevenot, Etienne A. [6 ]
Noret, Nausicaa [7 ]
Dauvergne, Bastien [2 ,8 ]
Kauffmann, Jean-Michel [8 ]
Van Antwerpen, Pierre [3 ,4 ]
Stevigny, Caroline [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, DPM, F-38000 Grenoble, France
[2] Univ Libre Bruxelles, Fac Pharm, Lab Pharmacognosie Bromatol & Nutr Humaine, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
[3] Univ Libre Bruxelles, Fac Pharm, Plateforme Analyt, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[4] Univ Libre Bruxelles, Fac Pharm, Lab Chim Pharmaceut Organ, Campus Plaine,CP 205-5, B-1050 Brussels, Belgium
[5] Bot Garden Meise, Nieuwelaan 38, B-1860 Meise, Belgium
[6] MetaboHUB Gif sur Yvette, CEA, LIST, Lab Data Anal & Syst Intelligence, Gif Sur Yvette, France
[7] Univ Libre Bruxelles, Lab Ecol Vegetale & Biogeochim, Campus Plaine,CP 244, B-1050 Brussels, Belgium
[8] Univ Libre Bruxelles, Fac Pharm, Lab Chim Analyt & Instrumentale & Bioelecrochem, Campus Plaine,CP 205-09, B-1050 Brussels, Belgium
关键词
Plant metabolomics; Coffea; LC-(HR) MS; Workflow4metabolomics; Caffeine; Ent-kaurane diterpenoid; MASS-SPECTROMETRY; CAFFEINE; ARABICA; CHROMATOGRAPHY; BIOSYNTHESIS; DISCRIMINATION; RUBIACEAE; LEAVES; GENES;
D O I
10.1016/j.foodchem.2017.10.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Coffee bean extracts are consumed all over the world as beverage and there is a growing interest in coffee leaf extracts as food supplements. The wild diversity in Coffea (Rubiaceae) genus is large and could offer new opportunities and challenges. In the present work, a metabolomics approach was implemented to examine leaf chemical composition of 9 Coffea species grown in the same environmental conditions. Leaves were analyzed by LC-HRMS and a comprehensive statistical workflow was designed. It served for univariate hypothesis testing and multivariate modeling by PCA and partial PLS-DA on the Workflow4Metabolomics infrastructure. The first two axes of PCA and PLS-DA describes more than 40% of variances with good values of explained variances. This strategy permitted to investigate the metabolomics data and their relation with botanic and genetic informations. Finally, the identification of several key metabolites for the discrimination between species was further characterized.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [1] Untargeted LC-HRMS metabolomics reveals candidate biomarkers for mucopolysaccharidoses
    Torres, Clarisse L.
    Scalco, Fernanda B.
    de Oliveira, Maria Lucia C.
    Peake, Roy W. A.
    Garrett, Rafael
    CLINICA CHIMICA ACTA, 2023, 541
  • [2] LC-HRMS Metabolomics for Untargeted Diagnostic Screening in Clinical Laboratories: A Feasibility Study
    Rochat, Bertrand
    Mohamed, Rayane
    Sottas, Pierre-Edouard
    METABOLITES, 2018, 8 (02):
  • [3] Optimization of fecal sample preparation for untargeted LC-HRMS based metabolomics
    Cesbron, N.
    Royer, A. -L.
    Guitton, Y.
    Sydor, A.
    Le Bizec, B.
    Dervilly-Pinel, G.
    METABOLOMICS, 2017, 13 (08)
  • [4] Optimization of fecal sample preparation for untargeted LC-HRMS based metabolomics
    N. Cesbron
    A.-L. Royer
    Y. Guitton
    A. Sydor
    B. Le Bizec
    G. Dervilly-Pinel
    Metabolomics, 2017, 13
  • [5] LC-HRMS data as a result of untargeted metabolomic profiling of human cerebrospinal fluid
    Mehl, Florence
    Gallart-Ayala, Hector
    Konz, Ioana
    Teav, Tony
    Oikonomidi, Aikaterini
    Peyratout, Gwendoline
    van der Velpen, Vera
    Popp, Julius
    Ivanisevic, Julijana
    DATA IN BRIEF, 2018, 21 : 1358 - 1362
  • [6] Detection of Pork in Beef Meatballs Using LC-HRMS Based Untargeted Metabolomics and Chemometrics for Halal Authentication
    Windarsih, Anjar
    Riswanto, Florentinus Dika Octa
    Bakar, Nor Kartini Abu
    Yuliana, Nancy Dewi
    Dachriyanus, Abdul
    Rohman, Abdul
    MOLECULES, 2022, 27 (23):
  • [7] Comparison of Three Untargeted Data Processing Workflows for Evaluating LC-HRMS Metabolomics Data
    Hemmer, Selina
    Manier, Sascha K.
    Fischmann, Svenja
    Westphal, Folker
    Wagmann, Lea
    Meyer, Markus R.
    METABOLITES, 2020, 10 (09) : 1 - 15
  • [8] Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics
    Zhang, Xiuqiong
    Zheng, Fujian
    Zhao, Chunxia
    Li, Zaifang
    Li, Chao
    Xia, Yueyi
    Zheng, Sijia
    Wang, Xinxin
    Sun, Xiaoshan
    Zhao, Xinjie
    Lin, Xiaohui
    Lu, Xin
    Xu, Guowang
    ANALYTICAL CHEMISTRY, 2022, 94 (48) : 16604 - 16613
  • [9] Untargeted profiling of pesticide metabolites by LC-HRMS: an exposomics tool for human exposure evaluation
    Jamin, Emilien L.
    Bonvallot, Nathalie
    Tremblay-Franco, Marie
    Cravedi, Jean-Pierre
    Chevrier, Cecile
    Cordier, Sylvaine
    Debrauwer, Laurent
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (04) : 1149 - 1161
  • [10] Comparative analysis of features extraction protocols for LC-HRMS untargeted metabolomics in mountain cheese 'identitation' '
    Pellacani, S.
    Citti, C.
    Strani, L.
    Benedetti, B.
    Becchi, P. P.
    Pizzamiglio, V.
    Michelini, S.
    Cannazza, G.
    De Juan, A.
    Cocchi, M.
    Durante, C.
    MICROCHEMICAL JOURNAL, 2024, 207