A proof that a discrete delta function is second-order accurate

被引:8
|
作者
Beale, J. Thomas [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
discrete delta function; level set function; surface integral;
D O I
10.1016/j.jcp.2007.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77-90] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of Mayo [A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285-299]. It can be expressed naturally using a level set function. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2195 / 2197
页数:3
相关论文
共 50 条