A proof that a discrete delta function is second-order accurate

被引:8
|
作者
Beale, J. Thomas [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
discrete delta function; level set function; surface integral;
D O I
10.1016/j.jcp.2007.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta function with application to level set methods, J. Comput. Phys. 211 (2006) 77-90] gives a second-order accurate quadrature rule for surface integrals using values on a regular background grid. The delta function is found using a technique of Mayo [A. Mayo, The fast solution of Poisson's and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285-299]. It can be expressed naturally using a level set function. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2195 / 2197
页数:3
相关论文
共 50 条
  • [21] The optimality principle for second-order discrete and discrete-approximate inclusions
    Saglam, Sevilay Demir
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (02): : 206 - 215
  • [22] On Duality in Second-Order Discrete and Differential Inclusions with Delay
    Mahmudov, Elimhan N.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (04) : 733 - 760
  • [23] On Duality in Second-Order Discrete and Differential Inclusions with Delay
    Elimhan N. Mahmudov
    Journal of Dynamical and Control Systems, 2020, 26 : 733 - 760
  • [24] Observation of discrete solitons in lattices with second-order interaction
    Szameit, Alexander
    Keil, Robert
    Dreisow, Felix
    Heinrich, Matthias
    Pertsch, Thomas
    Nolte, Stefan
    Tuennermann, Andreas
    OPTICS LETTERS, 2009, 34 (18) : 2838 - 2840
  • [25] Computing the uncomputable; or, The discrete charm of second-order simulacra
    Parker, Matthew W.
    SYNTHESE, 2009, 169 (03) : 447 - 463
  • [26] A COMPACTNESS RESULT FOR A SECOND-ORDER VARIATIONAL DISCRETE MODEL
    Braides, Andrea
    Defranceschi, Anneliese
    Vitali, Enrico
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 389 - 410
  • [27] Computing the uncomputable; or, The discrete charm of second-order simulacra
    Matthew W. Parker
    Synthese, 2009, 169 : 447 - 463
  • [28] Nonoscillatory solutions of a second-order nonlinear discrete system
    Matucci, Serena
    Rehak, Pavel
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 833 - 845
  • [29] On boundary value problems for second-order discrete inclusions
    Stehlik, Petr
    Tisdell, Christopher C.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (02) : 153 - 163
  • [30] The nature of discrete second-order self-similarity
    Gefferth, A
    Veitch, D
    Maricza, I
    Molnár, S
    Ruzsa, I
    ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) : 395 - 416