Asymptotics for a Determinant with a Confluent Hypergeometric Kernel

被引:34
|
作者
Deift, Percy [2 ]
Krasovsky, Igor [1 ]
Vasilevska, Julia [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] NYU, Courant Inst Math Sci, New York, NY 10003 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
RIEMANN-HILBERT APPROACH; RANDOM MATRICES; GAP PROBABILITY; UNIVERSALITY; SPECTRUM; POLYNOMIALS; MODELS; LIMIT; EDGE;
D O I
10.1093/imrn/rnq150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain "large gap" asymptotics for a Fredholm determinant with a confluent hyper-geometric kernel. We also obtain asymptotics for determinants with two types of Bessel kernels which appeared in random matrix theory.
引用
收藏
页码:2117 / 2160
页数:44
相关论文
共 50 条
  • [1] Asymptotics of the deformed Fredholm determinant of the confluent hypergeometric kernel
    Dai, Dan
    Zhai, Yu
    STUDIES IN APPLIED MATHEMATICS, 2022, 149 (04) : 1032 - 1085
  • [2] On the Fredholm determinant of the confluent hypergeometric kernel with discontinuities
    Xu, Shuai-Xia
    Zhao, Shu-Quan
    Zhao, Yu-Qiu
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [3] ASYMPTOTICS OF A CUBIC SINE KERNEL DETERMINANT
    Bothner, T.
    Its, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (04) : 515 - 565
  • [4] Asymptotics of the Airy-Kernel Determinant
    P. Deift
    A. Its
    I. Krasovsky
    Communications in Mathematical Physics, 2008, 278 : 643 - 678
  • [5] Asymptotics of the Airy-Kernel determinant
    Deift, P.
    Its, A.
    Krasovsky, I.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (03) : 643 - 678
  • [6] Asymptotics of Fredholm Determinant Associated with the Pearcey Kernel
    Dan Dai
    Shuai-Xia Xu
    Lun Zhang
    Communications in Mathematical Physics, 2021, 382 : 1769 - 1809
  • [7] Asymptotics of Fredholm Determinant Associated with the Pearcey Kernel
    Dai, Dan
    Xu, Shuai-Xia
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (03) : 1769 - 1809
  • [8] Asymptotics of the confluent hypergeometric process with a varying external potential in the super-exponential region
    Dai, Dan
    Yao, Luming
    Zhai, Yu
    ANALYSIS AND APPLICATIONS, 2024, 22 (08) : 1353 - 1387
  • [9] Oscillatory Asymptotics for the Airy Kernel Determinant on Two Intervals
    Blackstone, Elliot
    Charlier, Christophe
    Lenells, Jonatan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (04) : 2636 - 2687
  • [10] ASYMPTOTICS FOR THE FREDHOLM DETERMINANT OF THE SINE KERNEL ON A UNION OF INTERVALS
    WIDOM, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) : 159 - 180