Asymptotics of the deformed Fredholm determinant of the confluent hypergeometric kernel

被引:5
|
作者
Dai, Dan [1 ]
Zhai, Yu [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
关键词
confluent hypergeometric kernel; Fredholm determinant; gap probability; PAINLEVE-II; UNIVERSALITY; TOEPLITZ; AIRY; DISTRIBUTIONS; SOLVABILITY; POLYNOMIALS; ENSEMBLES; HANKEL; BESSEL;
D O I
10.1111/sapm.12528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the deformed Fredholm determinant of the confluent hypergeometric kernel. This determinant represents the gap probability of the corresponding determinantal point process where each particle is removed independently with probability 1-gamma$1- \gamma$, 0 <=gamma<1$0 \le \gamma <1$. We derive asymptotics of the deformed Fredholm determinant when the gap interval tends to infinity, up to and including the constant term. As an application of our results, we establish a central limit theorem for the eigenvalue counting function and a global rigidity upper bound for its maximum deviation.
引用
收藏
页码:1032 / 1085
页数:54
相关论文
共 50 条
  • [1] Asymptotics for a Determinant with a Confluent Hypergeometric Kernel
    Deift, Percy
    Krasovsky, Igor
    Vasilevska, Julia
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (09) : 2117 - 2160
  • [2] On the Fredholm determinant of the confluent hypergeometric kernel with discontinuities
    Xu, Shuai-Xia
    Zhao, Shu-Quan
    Zhao, Yu-Qiu
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 461
  • [3] Asymptotics of Fredholm Determinant Associated with the Pearcey Kernel
    Dan Dai
    Shuai-Xia Xu
    Lun Zhang
    Communications in Mathematical Physics, 2021, 382 : 1769 - 1809
  • [4] Asymptotics of Fredholm Determinant Associated with the Pearcey Kernel
    Dai, Dan
    Xu, Shuai-Xia
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (03) : 1769 - 1809
  • [5] ASYMPTOTICS FOR THE FREDHOLM DETERMINANT OF THE SINE KERNEL ON A UNION OF INTERVALS
    WIDOM, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) : 159 - 180
  • [6] Dyson's constant in the asymptotics of the Fredholm determinant of the sine kernel
    Ehrhardt, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (02) : 317 - 341
  • [7] Dyson's Constant in the Asymptotics of the Fredholm Determinant of the Sine Kernel
    Torsten Ehrhardt
    Communications in Mathematical Physics, 2006, 262 : 317 - 341
  • [8] ASYMPTOTICS OF A CUBIC SINE KERNEL DETERMINANT
    Bothner, T.
    Its, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2015, 26 (04) : 515 - 565
  • [9] Asymptotics of the Airy-Kernel Determinant
    P. Deift
    A. Its
    I. Krasovsky
    Communications in Mathematical Physics, 2008, 278 : 643 - 678
  • [10] Asymptotics of the Airy-Kernel determinant
    Deift, P.
    Its, A.
    Krasovsky, I.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (03) : 643 - 678