Generalized lie derivations in prime rings

被引:22
|
作者
Hvala, Bojan [1 ]
机构
[1] Univ Maribor, Dept Math, PEF, SLO-2000 Maribor, Slovenia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 05期
关键词
prime ring; derivation; generalized derivation; lie derivation; functional identities; generalized lie derivation;
D O I
10.11650/twjm/1500404875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define generalized Lie derivations on rings and prove that every generalized Lie derivation on a prime ring R is a sum of a generalized derivation from R into its central closure RC and an additive map from R into the extended centroid C sending commutators to zero.
引用
下载
收藏
页码:1425 / 1430
页数:6
相关论文
共 50 条
  • [21] Generalized Skew Derivations and g-Lie Derivations of Prime Rings
    De Filippis, Vincenzo
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 45 - 57
  • [22] Lie Centralizers and generalized Lie derivations on prime rings by local actions
    Goodarzi, Sh.
    Khotanloo, A.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (12) : 5277 - 5286
  • [24] GENERALIZED DERIVATIONS ON LIE IDEALS AND POWER VALUES ON PRIME RINGS
    Scudo, Giovanni
    Ansari, Abu Zaid
    MATHEMATICA SLOVACA, 2015, 65 (05) : 975 - 980
  • [25] On Lie Structure of Prime Rings with Generalized (alpha, beta)-Derivations
    Rehman, Nadeem Ur
    Mohammed AL-Omary, Radwan
    Haetinger, Claus
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2009, 27 (02): : 43 - 52
  • [26] On an identity involving generalized derivations and Lie ideals of prime rings
    Sandhu, Gurninder Singh
    AIMS MATHEMATICS, 2020, 5 (04): : 3472 - 3479
  • [27] Commuting and centralizing generalized derivations on lie ideals in prime rings
    V. De Filippis
    F. Rania
    Mathematical Notes, 2010, 88 : 748 - 758
  • [28] Left annihilator of generalized derivations on Lie ideals in prime rings
    Shujat F.
    Khan S.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (1): : 77 - 81
  • [29] On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings
    Ali S.
    Dhara B.
    Dar N.A.
    Khan A.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1): : 325 - 337
  • [30] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    N. Rehman
    A. Z. Ansari
    Ukrainian Mathematical Journal, 2014, 65 : 1247 - 1256