On Lie Structure of Prime Rings with Generalized (alpha, beta)-Derivations

被引:5
|
作者
Rehman, Nadeem Ur [1 ]
Mohammed AL-Omary, Radwan [1 ]
Haetinger, Claus [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Univates Univ Ctr, Ctr Exact & Technol Sci, BR-95900000 Lajeado, RS, Brazil
来源
关键词
Lie ideals; prime rings; (alpha; beta)-derivations and generalized (alpha; beta)-derivations; Morita context; reduced rings;
D O I
10.5269/bspm.v27i2.10209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and alpha, beta be automorphisms of R. An additive mapping F: R -> R is called a generalized (alpha, beta)-derivation on R if there exists an (alpha, beta) derivation d: R -> R such that F(xy) = F(x)alpha(y) beta(x)d(y) holds for all x, y is an element of R. For any x, y is an element of R, set [x, y](alpha, beta) = x alpha(y) beta(y)x and (x o y)(alpha,beta) = x alpha(y) beta(y)(x). In the present paper, we shall discuss the commutativity of a prime ring R admitting generalized (alpha, beta) -derivations F and G satisfying any one of the following properties: (i) F([x, yl) = (x o, (ii) F(x o y)(alpha, beta) = [x, y](alpha, beta) (iii) [F(x), y](alpha, beta) = (F(x) o y)(alpha, beta), (iv) F([x, yl) = [F(x), y](alpha, beta) (v) F(x o y) = (F(x) oy)(alpha, beta), (vi) F([x, y] = [alpha(x), G(y)] and (vii) F(x o y) = (alpha(x) o G(y)) for all x, y in some appropriate subset of R. Finally, obtain some results on semi-projective Morita context with generalized (alpha, beta)-derivations.
引用
下载
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [1] On Lie ideals with generalized (alpha, alpha)-derivations in prime rings
    Tiwari, S. K.
    Sharma, R. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2018, 67 (03) : 493 - 499
  • [2] On generalized (alpha, beta)-derivations in prime rings
    Garg, Chirag
    Sharma, R. K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2016, 65 (02) : 175 - 184
  • [3] Lie ideals and (alpha, beta)-derivations of *-prime rings
    Rehman, Nadeem ur
    Golbasi, Oznur
    Koc, Emine
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2013, 62 (02) : 245 - 251
  • [4] Generalized lie derivations in prime rings
    Hvala, Bojan
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1425 - 1430
  • [5] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [6] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [7] Generalized (alpha, beta)-derivations on Jordan ideals in *-prime rings
    Golbasi, Oznur
    Kizilgoz, Ozlem
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2014, 63 (01) : 11 - 17
  • [8] On Lie ideals of *-prime rings with generalized derivations
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    Ansari, Abu Zaid
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 19 - 26
  • [9] ON LIE IDEALS AND GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Huang, Shuliang
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 941 - 950
  • [10] A note on generalized Lie derivations of prime rings
    Yarbil, Nihan Baydar
    Argac, Nurcan
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 247 - 260