Newton polytopes of invariants of additive group actions

被引:12
|
作者
Derksen, H
Hadas, O
Makar-Limanov, L
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
13;
D O I
10.1016/S0022-4049(99)00151-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the vertices of Newton polytopes of invariants of an algebraic group action of the additive group of a field k of arbitrary characteristic on affine n-space over k lie on the coordinate hyperplanes. Furthermore, let E be the set of all edges of these Newton polytopes whose vertices lie in different coordinate hyperplanes. It is shown that one of these polytopes has edges with all directions represented in E. (C) 2001 Elsevier Science B.V. All rights reserved. MSC: 13.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [1] Additive group actions with finitely generated invariants
    Deveney, James K.
    Finston, David R.
    OSAKA JOURNAL OF MATHEMATICS, 2007, 44 (01) : 91 - 98
  • [2] Separating invariants for arbitrary linear actions of the additive group
    Emilie Dufresne
    Jonathan Elmer
    Müfit Sezer
    Manuscripta Mathematica, 2014, 143 : 207 - 219
  • [3] Separating invariants for arbitrary linear actions of the additive group
    Dufresne, Emilie
    Elmer, Jonathan
    Sezer, Mufit
    MANUSCRIPTA MATHEMATICA, 2014, 143 (1-2) : 207 - 219
  • [4] INITIAL FORMS OF STABLE INVARIANTS FOR ADDITIVE GROUP ACTIONS
    Kuroda, Shigeru
    TRANSFORMATION GROUPS, 2014, 19 (03) : 853 - 860
  • [5] INITIAL FORMS OF STABLE INVARIANTS FOR ADDITIVE GROUP ACTIONS
    SHIGERU KURODA
    Transformation Groups, 2014, 19 : 853 - 860
  • [6] The Bieri–Neumann–Strebel invariants via Newton polytopes
    Dawid Kielak
    Inventiones mathematicae, 2020, 219 : 1009 - 1068
  • [7] On Additive invariants of actions of additive and multiplicative groups
    Hu, Wenchuan
    JOURNAL OF K-THEORY, 2013, 12 (03) : 551 - 568
  • [8] SU(2) graph invariants, Regge actions and polytopes
    Dona, Pietro
    Fanizza, Marco
    Sarno, Giorgio
    Speziale, Simone
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [9] The Bieri-Neumann-Strebel invariants via Newton polytopes
    Kielak, Dawid
    INVENTIONES MATHEMATICAE, 2020, 219 (03) : 1009 - 1068
  • [10] THE INVARIANTS OF ORTHOGONAL GROUP-ACTIONS
    CHIANG, L
    HUNG, YC
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (02) : 313 - 319