Two-derivative Runge-Kutta methods with optimal phase properties

被引:9
|
作者
Kalogiratou, Zacharoula [1 ]
Monovasihs, Theodore [2 ]
Simos, Theodore E. [3 ,4 ,5 ]
机构
[1] Univ Western Macedonia, Dept Informat, Kastoria, Greece
[2] Univ Western Macedonia, Dept Econ, Kastoria, Greece
[3] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[4] Ural Fed Univ, Grp Modern Computat Methods, 19 Mira St, Ekaterinburg 620002, Russia
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi, Greece
关键词
amplification error; phase lag; two-derivative Runge-Kutta methods; NUMERICAL-SOLUTION; ORDER INFINITY; INTEGRATION; PAIRS; LAG;
D O I
10.1002/mma.5936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider two-derivative Runge-Kutta methods for the numerical integration of first-order differential equations with oscillatory solution. We construct methods with constant coefficients and special properties as minimum phase-lag and amplification errors with three and four stages. All methods constructed have fifth algebraic order. We also present methods with variable coefficients with zero phase-lag and amplification errors. In order to examine the efficiency of the new methods, we use four well-known oscillatory test problems.
引用
下载
收藏
页码:1267 / 1277
页数:11
相关论文
共 50 条
  • [21] Two Derivative Runge-Kutta Methods of Order Six
    Kalogiratou, Z.
    Monovasilis, Th
    Simos, T. E.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [22] New optimized two-derivative Runge-Kutta type methods for solving the radial Schrödinger equation
    Yonglei Fang
    Xiong You
    Journal of Mathematical Chemistry, 2014, 52 : 240 - 254
  • [23] Modified two-derivative Runge–Kutta methods for the Schrödinger equation
    Yanping Yang
    Yonglei Fang
    Xiong You
    Journal of Mathematical Chemistry, 2018, 56 : 799 - 812
  • [24] New fifth-order two-derivative Runge-Kutta methods with constant and frequency-dependent coefficients
    Kalogiratou, Zacharoula
    Monovasilis, Theodore
    Simos, Theodore E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1955 - 1966
  • [25] New two-derivative implicit-explicit Runge-Kutta methods for stiff reaction-diffusion systems
    Singh, Ankit
    Maurya, Vikas
    Rajpoot, Manoj K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [26] Trigonometrical fitting conditions for two derivative Runge-Kutta methods
    Th. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Numerical Algorithms, 2018, 79 : 787 - 800
  • [27] Trigonometrical fitting conditions for two derivative Runge-Kutta methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 787 - 800
  • [28] Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach
    Angela Y. J. Tsai
    Robert P. K. Chan
    Shixiao Wang
    Numerical Algorithms, 2014, 65 : 687 - 703
  • [29] Generating optimal Runge-Kutta methods
    Androulakis, GS
    Grapsa, TN
    Vrahatis, MN
    PROCEEDINGS OF THE SIXTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1996, : 1 - 7
  • [30] Two-derivative Runge–Kutta methods with increased phase-lag and dissipation order for the Schrödinger equation
    Yonglei Fang
    Yanwei Zhang
    Ping Wang
    Journal of Mathematical Chemistry, 2018, 56 : 1924 - 1934