Infinity of minimal homoclinic orbits

被引:3
|
作者
Zhou, Min [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
DEFINITE LAGRANGIAN SYSTEMS; CONNECTING ORBITS; AUBRY SETS;
D O I
10.1088/0951-7715/24/3/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that there are infinitely many (M) over bar -semi-static homoclinic orbits to (A) over tilde (0) under the condition that there exists a cohomology c at the boundary of the flat such that h(c)(g) > 0 holds for each 0 not equal g is an element of H(1)(M x T, A(0), Z).
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [41] HOMOCLINIC ORBITS FOR LAGRANGIAN SYSTEMS
    Wu SHAOPING Departmentof Mathematics
    Chinese Annals of Mathematics, 1996, (02) : 245 - 256
  • [42] Continuation of homoclinic orbits in MATLAB
    Friedman, M
    Govaerts, W
    Kuznetsov, YA
    Sautois, B
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 263 - 270
  • [43] Homoclinic orbits for an unbounded superquadratic
    Wang, Jun
    Xu, Junxiang
    Zhang, Fubao
    Wang, Lei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 411 - 435
  • [44] Scarring by homoclinic and heteroclinic orbits
    Wisniacki, D. A.
    Vergini, E.
    Benito, R. M.
    Borondo, F.
    PHYSICAL REVIEW LETTERS, 2006, 97 (09)
  • [45] Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations
    Huang, DB
    PHYSICS LETTERS A, 2003, 309 (3-4) : 248 - 253
  • [46] Homoclinic orbits and chaos in discretized perturbed NLS systems: Part I. Homoclinic orbits
    Y. Li
    D. W. McLaughlin
    Journal of Nonlinear Science, 1997, 7 : 211 - 269
  • [47] Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits
    Li, Y.
    McLaughlin, D.W.
    Journal of Nonlinear Science, 7 (03): : 211 - 269
  • [48] Homoclinic orbits in families of hypersurfaces with hyperbolic periodic orbits
    Bernard, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 180 (02) : 427 - 452
  • [49] ON ORBITS TENDING TO INFINITY
    BEAUZAMY, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (04): : 123 - 126
  • [50] On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and variation of entropy
    Pujals, ER
    Sambarino, M
    NONLINEARITY, 2000, 13 (03) : 921 - 926