Infinity of minimal homoclinic orbits

被引:3
|
作者
Zhou, Min [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
DEFINITE LAGRANGIAN SYSTEMS; CONNECTING ORBITS; AUBRY SETS;
D O I
10.1088/0951-7715/24/3/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that there are infinitely many (M) over bar -semi-static homoclinic orbits to (A) over tilde (0) under the condition that there exists a cohomology c at the boundary of the flat such that h(c)(g) > 0 holds for each 0 not equal g is an element of H(1)(M x T, A(0), Z).
引用
收藏
页码:931 / 939
页数:9
相关论文
共 50 条
  • [31] On the Homoclinic Orbits of the Lu System
    Alvarez-Ramirez, M.
    Garcia-Saldana, J. D.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (05):
  • [32] Homoclinic orbits of a Hamiltonian system
    Ding, YH
    Willem, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05): : 759 - 778
  • [33] On the C∞ genericity of homoclinic orbits
    Oliveira, F
    NONLINEARITY, 2000, 13 (03) : 653 - 662
  • [34] Homoclinic orbits for Lagrangian systems
    Wu, SP
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1996, 17 (02) : 245 - 256
  • [35] SOLITARY WAVES AND HOMOCLINIC ORBITS
    BALMFORTH, NJ
    ANNUAL REVIEW OF FLUID MECHANICS, 1995, 27 : 335 - 373
  • [36] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [37] HYPERBOLICITY AND THE CREATION OF HOMOCLINIC ORBITS
    PALIS, J
    TAKENS, F
    ANNALS OF MATHEMATICS, 1987, 125 (02) : 337 - 374
  • [38] Existence of optimal homoclinic orbits
    Hudon, N.
    Hoffner, K.
    Guay, M.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3829 - 3833
  • [39] GLOBAL ASPECTS OF HOMOCLINIC ORBITS
    KAHLERT, C
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1992, 46 (04): : 266 - 273
  • [40] Homoclinic Orbits in the Complex Domain
    Int J Bifurcations Chaos Appl Sci Eng, 2 (253):