Scaling limits for critical inhomogeneous random graphs with finite third moments

被引:44
|
作者
Bhamidi, Shankar [1 ]
van der Hofstad, Remco [2 ]
van Leeuwaarden, Johan S. H. [2 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27510 USA
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
来源
基金
加拿大自然科学与工程研究理事会;
关键词
critical random graphs; phase transitions; inhomogeneous networks; Brownian excursions; size-biased ordering; martingale techniques; COMPONENT;
D O I
10.1214/EJP.v15-817
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We identify the scaling limit for the sizes of the largest components at criticality for inhomogeneous random graphs with weights that have finite third moments. We show that the sizes of the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian motion, which extends results of Aldous [1] for the critical behavior of Erdos-Renyi random graphs. We rely heavily on martingale convergence techniques, and concentration properties of (super) martingales. This paper is part of a programme initiated in [16] to study the near-critical behavior in inhomogeneous random graphs of so-called rank-1.
引用
收藏
页码:1682 / 1703
页数:22
相关论文
共 50 条
  • [1] NOVEL SCALING LIMITS FOR CRITICAL INHOMOGENEOUS RANDOM GRAPHS
    Bhamidi, Shankar
    van der Hofstad, Remco
    van Leeuwaarden, Johan S. H.
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06): : 2299 - 2361
  • [2] Local limits of spatial inhomogeneous random graphs
    van der Hofstad, Remco
    van der Hoorn, Pim
    Maitra, Neeladri
    [J]. ADVANCES IN APPLIED PROBABILITY, 2023, 55 (03) : 793 - 840
  • [3] Critical behavior in inhomogeneous random graphs
    van der Hofstad, Remco
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (04) : 480 - 508
  • [4] Scaling of the Clustering Function in Spatial Inhomogeneous Random Graphs
    Remco van der Hofstad
    Pim van der Hoorn
    Neeladri Maitra
    [J]. Journal of Statistical Physics, 190
  • [5] Scaling of the Clustering Function in Spatial Inhomogeneous Random Graphs
    van der Hofstad, Remco
    van der Hoorn, Pim
    Maitra, Neeladri
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (06)
  • [6] LIMITS OF MULTIPLICATIVE INHOMOGENEOUS RANDOM GRAPHS AND LEVY TREES: THE CONTINUUM GRAPHS
    Broutin, Nicolas
    Duquesne, Thomas
    Wang, Minmin
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2448 - 2503
  • [7] Continuum limit of critical inhomogeneous random graphs
    Bhamidi, Shankar
    Sen, Sanchayan
    Wang, Xuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (1-2) : 565 - 641
  • [8] Continuum limit of critical inhomogeneous random graphs
    Shankar Bhamidi
    Sanchayan Sen
    Xuan Wang
    [J]. Probability Theory and Related Fields, 2017, 169 : 565 - 641
  • [9] SCALING LIMITS OF RANDOM GRAPHS FROM SUBCRITICAL CLASSES
    Panagiotou, Konstantinos
    Stufler, Benedikt
    Weller, Kerstin
    [J]. ANNALS OF PROBABILITY, 2016, 44 (05): : 3291 - 3334
  • [10] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848