Continuum limit of critical inhomogeneous random graphs

被引:0
|
作者
Shankar Bhamidi
Sanchayan Sen
Xuan Wang
机构
[1] University of North Carolina,Department of Statistics and Operations Research, 304 Hanes Hall
[2] Eindhoven University of Technology,Department of Mathematics and Computer Science
[3] MetaForum,undefined
[4] Databricks,undefined
来源
关键词
Multiplicative coalescent; Continuum random tree; Critical random graphs; Branching processes; -trees; Scaling limits; Primary 60C05; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
The last few years have witnessed tremendous interest in understanding the structure as well as the behavior of dynamics for inhomogeneous random graph models to gain insight into real-world systems. In this study we analyze the maximal components at criticality of one famous class of such models, the rank-one inhomogeneous random graph model (Norros and Reittu, Adv Appl Probab 38(1):59–75, 2006; Bollobás et al., Random Struct Algorithms 31(1):3–122, 2007, Section 16.4). Viewing these components as measured random metric spaces, under finite moment assumptions for the weight distribution, we show that the components in the critical scaling window with distances scaled by n-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{-1/3}$$\end{document} converge in the Gromov–Haussdorf–Prokhorov metric to rescaled versions of the limit objects identified for the Erdős–Rényi random graph components at criticality in Addario-Berry et al. (Probab. Theory Related Fields, 152(3–4):367–406, 2012). A key step is the construction of connected components of the random graph through an appropriate tilt of a fundamental class of random trees called p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {p}$$\end{document}-trees (Camarri and Pitman, Electron. J. Probab 5(2):1–18, 2000; Aldous et al., Probab Theory Related Fields 129(2):182–218, 2004). This is the first step in rigorously understanding the scaling limits of objects such as the minimal spanning tree and other strong disorder models from statistical physics (Braunstein et al., Phys Rev Lett 91(16):168701, 2003) for such graph models. By asymptotic equivalence (Janson, Random Struct Algorithms 36(1):26–45, 2010), the same results are true for the Chung–Lu model (Chung and Lu, Proc Natl Acad Sci 99(25):15879–15882, 2002; Chung and Lu, Ann Combin 6(2):125–145, 2002; Chung and Lu, Complex graphs and networks, 2006) and the Britton–Deijfen–Martin–Löf model (Britton et al., J Stat Phys 124(6):1377–1397, 2006). A crucial ingredient of the proof of independent interest are tail bounds for the height of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {p}$$\end{document}-trees. The techniques developed in this paper form the main technical bedrock for the general program developed in Bhamidi et al. (Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erdős–Rényi random graph. arXiv preprint, 2014) for proving universality of the continuum scaling limits in the critical regime for a wide array of other random graph models including the configuration model and inhomogeneous random graphs with general kernels (Bollobás et al., Random Struct Algorithms 31(1):3–122, 2007).
引用
收藏
页码:565 / 641
页数:76
相关论文
共 50 条
  • [1] Continuum limit of critical inhomogeneous random graphs
    Bhamidi, Shankar
    Sen, Sanchayan
    Wang, Xuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (1-2) : 565 - 641
  • [2] The continuum limit of critical random graphs
    L. Addario-Berry
    N. Broutin
    C. Goldschmidt
    [J]. Probability Theory and Related Fields, 2012, 152 : 367 - 406
  • [3] The continuum limit of critical random graphs
    Addario-Berry, L.
    Broutin, N.
    Goldschmidt, C.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) : 367 - 406
  • [4] Continuum limit of the nonlocal p-Laplacian evolution problem on random inhomogeneous graphs
    Hafiene, Yosra
    Fadili, Jalal M.
    Chesneau, Christophe
    Elmoataz, Abderrahim
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (02) : 565 - 589
  • [5] The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs
    Shankar Bhamidi
    Remco van der Hofstad
    Sanchayan Sen
    [J]. Probability Theory and Related Fields, 2018, 170 : 387 - 474
  • [6] The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs
    Bhamidi, Shankar
    van der Hofstad, Remco
    Sen, Sanchayan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) : 387 - 474
  • [7] Critical behavior in inhomogeneous random graphs
    van der Hofstad, Remco
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (04) : 480 - 508
  • [8] LIMITS OF MULTIPLICATIVE INHOMOGENEOUS RANDOM GRAPHS AND LEVY TREES: THE CONTINUUM GRAPHS
    Broutin, Nicolas
    Duquesne, Thomas
    Wang, Minmin
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2448 - 2503
  • [9] A limit theorem for small cliques in inhomogeneous random graphs
    Hladky, Jan
    Pelekis, Christos
    Sileikis, Matas
    [J]. JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 578 - 599
  • [10] THE CONTINUUM LIMIT OF THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS
    Medvedev, Georgi S.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (04) : 883 - 898