The continuum limit of critical random graphs

被引:0
|
作者
L. Addario-Berry
N. Broutin
C. Goldschmidt
机构
[1] McGill University,Department of Mathematics and Statistics
[2] Projet algorithms,Department of Statistics
[3] INRIA Rocquencourt,undefined
[4] University of Warwick,undefined
来源
关键词
Random graphs; Gromov–Hausdorff distance; Scaling limits; Continuum random tree; Diameter; 05C80; 60C05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Erdős–Rényi random graph G(n, p) inside the critical window, that is when p = 1/n + λn−4/3, for some fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbb{R}}$$\end{document} . We prove that the sequence of connected components of G(n, p), considered as metric spaces using the graph distance rescaled by n−1/3, converges towards a sequence of continuous compact metric spaces. The result relies on a bijection between graphs and certain marked random walks, and the theory of continuum random trees. Our result gives access to the answers to a great many questions about distances in critical random graphs. In particular, we deduce that the diameter of G(n, p) rescaled by n−1/3 converges in distribution to an absolutely continuous random variable with finite mean.
引用
收藏
页码:367 / 406
页数:39
相关论文
共 50 条
  • [1] The continuum limit of critical random graphs
    Addario-Berry, L.
    Broutin, N.
    Goldschmidt, C.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) : 367 - 406
  • [2] Continuum limit of critical inhomogeneous random graphs
    Bhamidi, Shankar
    Sen, Sanchayan
    Wang, Xuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (1-2) : 565 - 641
  • [3] Continuum limit of critical inhomogeneous random graphs
    Shankar Bhamidi
    Sanchayan Sen
    Xuan Wang
    [J]. Probability Theory and Related Fields, 2017, 169 : 565 - 641
  • [4] THE CONTINUUM LIMIT OF THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS
    Medvedev, Georgi S.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (04) : 883 - 898
  • [5] The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs
    Shankar Bhamidi
    Remco van der Hofstad
    Sanchayan Sen
    [J]. Probability Theory and Related Fields, 2018, 170 : 387 - 474
  • [6] The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs
    Bhamidi, Shankar
    van der Hofstad, Remco
    Sen, Sanchayan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) : 387 - 474
  • [7] Continuum Limit of Lipschitz Learning on Graphs
    Roith, Tim
    Bungert, Leon
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (02) : 393 - 431
  • [8] Continuum limit of the nonlocal p-Laplacian evolution problem on random inhomogeneous graphs
    Hafiene, Yosra
    Fadili, Jalal M.
    Chesneau, Christophe
    Elmoataz, Abderrahim
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (02) : 565 - 589
  • [9] Continuum Limit of Lipschitz Learning on Graphs
    Tim Roith
    Leon Bungert
    [J]. Foundations of Computational Mathematics, 2023, 23 : 393 - 431
  • [10] SCALING LIMIT OF DYNAMICAL PERCOLATION ON CRITICAL ERDOS-RENYI RANDOM GRAPHS
    Rossignol, Raphael
    [J]. ANNALS OF PROBABILITY, 2021, 49 (01): : 322 - 399