Entanglement scaling in lattice systems

被引:0
|
作者
Audenaert, K. M. R. [1 ]
Cramer, M. [2 ,3 ]
Eisert, J. [1 ,2 ]
Plenio, M. B. [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, 53 Princes Gate,Exhibit Rd, London SW7 2PG, England
[2] Univ London Imperial Coll Sci Technol & Med, QOLS, Blackett Lab, London SW7 2BW, England
[3] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
来源
THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY | 2007年 / 67卷
关键词
D O I
10.1088/1742-6596/67/1/012021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Scaling, entanglement, and quantum phase transitions
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    FIRST INTERNATIONAL SYMPOSIUM ON QUANTUM INFORMATICS, 2002, 5128 : 22 - 28
  • [42] Critical Scaling Behaviors of Entanglement Spectra
    Tang, Qi-Cheng
    Zhu, Wei
    CHINESE PHYSICS LETTERS, 2020, 37 (01)
  • [43] Critical Scaling Behaviors of Entanglement Spectra
    唐启承
    朱伟
    Chinese Physics Letters, 2020, 37 (01) : 6 - 16
  • [44] ENTANGLEMENT SCALING IN POLYMER MELTS AND SOLUTIONS
    KAVASSALIS, TA
    NOOLANDI, J
    MACROMOLECULES, 1989, 22 (06) : 2709 - 2720
  • [45] Unusual corrections to scaling in entanglement entropy
    Cardy, John
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [46] Nonlocal scaling operators with entanglement renormalization
    Evenbly, G.
    Corboz, P.
    Vidal, G.
    PHYSICAL REVIEW B, 2010, 82 (13)
  • [47] Scaling of temporal entanglement in proximity to integrability
    Lerose, Alessio
    Sonner, Michael
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2021, 104 (03)
  • [48] Pairwise entanglement and geometric phase in high dimensional free-Fermion lattice systems
    Cui, H. T.
    Zhang, Y. F.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 51 (03): : 393 - 400
  • [49] Entanglement and criticality in translationally invariant harmonic lattice systems with finite-range interactions
    Unanyan, RG
    Fleischhauer, M
    PHYSICAL REVIEW LETTERS, 2005, 95 (26)
  • [50] Pairwise entanglement and geometric phase in high dimensional free-Fermion lattice systems
    H. T. Cui
    Y. F. Zhang
    The European Physical Journal D, 2009, 51