Entanglement scaling in lattice systems

被引:0
|
作者
Audenaert, K. M. R. [1 ]
Cramer, M. [2 ,3 ]
Eisert, J. [1 ,2 ]
Plenio, M. B. [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, 53 Princes Gate,Exhibit Rd, London SW7 2PG, England
[2] Univ London Imperial Coll Sci Technol & Med, QOLS, Blackett Lab, London SW7 2BW, England
[3] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
来源
THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY | 2007年 / 67卷
关键词
D O I
10.1088/1742-6596/67/1/012021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Scaling the Kondo lattice
    Yi-feng Yang
    Zachary Fisk
    Han-Oh Lee
    J. D. Thompson
    David Pines
    Nature, 2008, 454 : 611 - 613
  • [32] SCALING OF ENTANGLEMENT ENTROPY AND HYPERBOLIC GEOMETRY
    Matsueda, Hiroaki
    INTERFACE BETWEEN QUANTUM INFORMATION AND STATISTICAL PHYSICS, 2013, 7 : 143 - 165
  • [33] Diffusive scaling of Renyi entanglement entropy
    Zhou, Tianci
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [34] Scaling laws for the decay of multiqubit entanglement
    Aolita, L.
    Chaves, R.
    Cavalcanti, D.
    Acin, A.
    Davidovich, L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (08)
  • [35] Critical Scaling Behaviors of Entanglement Spectra
    唐启承
    朱伟
    Chinese Physics Letters, 2020, (01) : 6 - 16
  • [36] Entanglement entropy scaling of the XXZ chain
    Chen, Pochung
    Xue, Zhi-long
    McCulloch, I. P.
    Chung, Ming-Chiang
    Cazalilla, Miguel
    Yip, S-K
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [37] Scaling, entanglement, and quantum phase transitions
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    LECTURES ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS VII, 2003, 678 : 323 - 331
  • [38] Quantum quench and scaling of entanglement entropy
    Caputa, Pawel
    Das, Sumit R.
    Nozaki, Masahiro
    Tomiya, Akio
    PHYSICS LETTERS B, 2017, 772 : 53 - 57
  • [39] Entanglement scaling in quantum advantage benchmarks
    Biamonte, Jacob D.
    Morales, Mauro E. S.
    Koh, Dax Enshan
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [40] Critical Scaling Behaviors of Entanglement Spectra∗
    Tang, Qi-Cheng
    Zhu, Wei
    Zhu, Wei (zhuwei@westlake.edu.cn), 1600, IOP Publishing Ltd (37):