A p-theory of ordered normed spaces

被引:12
|
作者
Karn, Anil K. [1 ]
机构
[1] Univ Delhi, Deen Dayal Upadhyaya Coll, Dept Math, New Delhi 110015, India
关键词
Ordered normed spaces; Order smooth p-normed spaces; Order contraction; Order isometry; Matrix ordered space; Matricially order smooth p-normed spaces; Unital envelope; OPERATOR-SPACES; SUBSPACES;
D O I
10.1007/s11117-009-0029-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a pair of axioms (O.p.1) and (O.p.2) for 1 a parts per thousand currency sign p a parts per thousand currency sign a and initiate a study of a (matrix) ordered space with a (matrix) norm, in which the (matrix) norm is related to the (matrix) order. We call such a space a (matricially) order smooth p-normed space. The advantage of studying these spaces over L (p) -matricially Riesz normed spaces is that every matricially order smooth a-normed space can be order embedded in some C*-algebra. We also study the adjoining of an order unit to a (matricially) order smooth a-normed space. As a consequence, we sharpen Arveson's extension theorem of completely positive maps. Another combination of these axioms yields an order theoretic characterization of the set of real numbers amongst ordered normed linear spaces.
引用
收藏
页码:441 / 458
页数:18
相关论文
共 50 条
  • [41] Robinson-Ursescu Theorem in p-normed Spaces
    丘京辉
    [J]. Communications in Mathematical Research, 2002, (03) : 209 - 219
  • [42] The Property (P) and New Fixed Point Results on Ordered Metric Spaces in Neutrosophic Theory
    Al-Omeri W.F.
    [J]. Neutrosophic Sets and Systems, 2023, 56 : 261 - 275
  • [43] Tilings of Normed Spaces
    De Bernardi, Carlo Alberto
    Vesely, Libor
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 321 - 337
  • [44] Angles in normed spaces
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    Ralph Teixeira
    [J]. Aequationes mathematicae, 2017, 91 : 201 - 236
  • [45] ANALYTICALLY NORMED SPACES
    DOBRIC, V
    [J]. MATHEMATICA SCANDINAVICA, 1987, 60 (01) : 109 - 128
  • [46] Translations in normed spaces
    Kominek, Z
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 49 (3-4): : 295 - 299
  • [47] On the completeness of normed spaces
    Najati, Abbas
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (08) : 880 - 882
  • [48] ORTHOGONALITY IN NORMED SPACES
    PARTINGTON, JR
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (03) : 449 - 455
  • [49] On the smoothness of normed spaces
    Józef Banaś
    Justyna Ochab
    Tomasz Zając
    [J]. Annals of Functional Analysis, 2024, 15
  • [50] Angles in normed spaces
    Balestro, Vitor
    Horvath, Akos G.
    Martini, Horst
    Teixeira, Ralph
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (02) : 201 - 236