Angles in normed spaces

被引:22
|
作者
Balestro, Vitor [1 ,2 ]
Horvath, Akos G. [3 ]
Martini, Horst [4 ,5 ]
Teixeira, Ralph [2 ]
机构
[1] CEFET RJ Campus Nova Friburgo, BR-28635000 Nova Friburgo, Brazil
[2] Univ Fed Fluminense, Inst Matemat & Estat, BR-24020140 Niteroi, RJ, Brazil
[3] Budapest Univ Technol & Econ, Inst Math, H-1111 Budapest, Hungary
[4] Harbin Univ Sci & Technol, Dept Appl Math, Harbin 150080, Peoples R China
[5] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
Angle function; Angle measure; Angular bisectors; Birkhoff orthogonality; Equiangularity; Inner-product space; Isosceles orthogonality; Minkowski space; Normed space; Pythagorean orthogonality; Radon planes; Roberts orthogonality; Singer orthogonality; Strictly convex norm; Wilson angle; EUCLIDEAN ANGULAR BISECTORS; INNER PRODUCT-SPACES; LINEAR-SPACES; RADON CURVES; PLANES; ANALOGS;
D O I
10.1007/s00010-016-0445-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concepts of angle, angle functions, and the question how to measure angles present old and well-established mathematical topics referring to the Euclidean space, and there exist also various extensions to non-Euclidean spaces of different types. In particular, it is very interesting to investigate or to combine (geometric) properties of possible concepts of angle functions and angle measures in finite-dimensional real Banach spaces (= Minkowski spaces). However, going into this direction one will observe that there is no monograph or survey reflecting the complete picture of the existing literature on such concepts in a satisfying manner. We try to close this gap. In this expository paper (containing also new results, and new proofs of known results) the reader will get a comprehensive overview of this field, including further related aspects, as well. For example, angular bisectors, their applications, and angle types which preserve certain kinds of orthogonality are discussed. The latter aspect yields, of course, an interesting link to the large variety of orthogonality types in such spaces.
引用
收藏
页码:201 / 236
页数:36
相关论文
共 50 条
  • [1] Angles in normed spaces
    Vitor Balestro
    Ákos G. Horváth
    Horst Martini
    Ralph Teixeira
    [J]. Aequationes mathematicae, 2017, 91 : 201 - 236
  • [2] ANGLES AND A CLASSIFICATION OF NORMED SPACES
    Thurey, Volker W.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (01): : 114 - 137
  • [3] ON BIRKHOFF ANGLES IN NORMED SPACES
    Gunawan, Hendra
    Jamaludin, Muhamad
    Pratamadirdja, Mas Daffa
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2021, 27 (03) : 270 - 284
  • [4] WILSON ANGLES IN LINEAR NORMED SPACES
    VALENTINE, JE
    WAYMENT, SG
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1971, 36 (01) : 239 - +
  • [5] ANGLES IN METRIC AND NORMED LINEAR-SPACES
    MARTIN, C
    VALENTINE, JE
    [J]. COLLOQUIUM MATHEMATICUM, 1976, 34 (02) : 209 - 217
  • [6] Projections,Birkhoff Orthogonality and Angles in Normed Spaces
    Chen Zhi-zhi1
    [J]. Communications in Mathematical Research, 2011, 27 (04) : 378 - 384
  • [7] ANGLES IN NORMED LINEAR-SPACES AND A CHARACTERIZATION OF REAL INNER PRODUCT-SPACES
    DIMINNIE, CR
    ANDALAFTE, EZ
    FREESE, RW
    [J]. MATHEMATISCHE NACHRICHTEN, 1986, 129 : 197 - 204
  • [8] [φ, p]-normed spaces and Menger [φ, p]-normed spaces
    Wu, Yaoqiang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6793 - 6800
  • [9] P-, I-, g-, and D-Angles in Normed Spaces
    Gunawan, Hendra
    Lindiarni, Janny
    Neswan, Oki
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2014, 46 (01) : 24 - 32
  • [10] P-, I-, g-, and D-Angles in Normed Spaces
    Gunawan, Hendra
    Lindiarni, Janny
    Neswan, Oki
    [J]. JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2008, 40 (01) : 24 - 32