Projections,Birkhoff Orthogonality and Angles in Normed Spaces

被引:0
|
作者
Chen Zhi-zhi1
机构
关键词
projection; norm; Birkhoff orthogonality; angle; Minkowski plane; duality;
D O I
10.13447/j.1674-5647.2011.04.009
中图分类号
O177.3 [线性空间理论(向量空间)];
学科分类号
摘要
Let X be a Minkowski plane,i.e.,a real two dimensional normed linear space.We use projections to give a definition of the angle Aq(x,y)between two vectors x and y in X,such that x is Birkhoff orthogonal to y if and only if Aq(x,y)= π 2.Some other properties of this angle are also discussed.
引用
收藏
页码:378 / 384
页数:7
相关论文
共 50 条
  • [1] ON BIRKHOFF ANGLES IN NORMED SPACES
    Gunawan, Hendra
    Jamaludin, Muhamad
    Pratamadirdja, Mas Daffa
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2021, 27 (03) : 270 - 284
  • [2] On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces
    Javier Alonso
    Horst Martini
    Senlin Wu
    Aequationes mathematicae, 2012, 83 : 153 - 189
  • [3] On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces
    Alonso, Javier
    Martini, Horst
    Wu, Senlin
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 153 - 189
  • [4] Symmetrized Birkhoff-James orthogonality in arbitrary normed spaces
    Arambasic, Ljiljana
    Guterman, Alexander
    Kuzma, Bojan
    Rajic, Rajna
    Zhilina, Svetlana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [5] Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 511 (01)
  • [6] Local Approximate Symmetry of Birkhoff–James Orthogonality in Normed Linear Spaces
    Jacek Chmieliński
    Divya Khurana
    Debmalya Sain
    Results in Mathematics, 2021, 76
  • [7] Local Approximate Symmetry of Birkhoff-James Orthogonality in Normed Linear Spaces
    Chmielinski, Jacek
    Khurana, Divya
    Sain, Debmalya
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [8] ORTHOGONALITY IN NORMED SPACES
    PARTINGTON, JR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (03) : 449 - 455
  • [9] On an Orthogonality Equation in Normed Spaces
    P. Wójcik
    Functional Analysis and Its Applications, 2018, 52 : 224 - 227
  • [10] ORTHOGONALITY IN NORMED LINEAR SPACES
    JAMES, RC
    DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) : 291 - 302