Numerical identification of a nonlinear diffusion coefficient by discrete mollification

被引:6
|
作者
Mejia, Carlos E. [1 ]
Acosta, Carlos D. [2 ]
Saleme, Katerine I. [3 ]
机构
[1] Univ Nacl Colombia, Escuela Matemat, Medellin, Colombia
[2] Univ Nacl Colombia, Dept Matemat & Estadist, Manizales, Colombia
[3] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS USA
关键词
Mollification; Parameter identification; Space-marching; FLOCCULATED SUSPENSIONS; 2-D IHCP; PARAMETERS; EQUATIONS;
D O I
10.1016/j.camwa.2011.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete mollification method is a convolution-based filtering procedure suitable for the regularization of ill-posed problems. Combined with explicit space-marching finite difference schemes, it provides stability and convergence for a variety of coefficient identification problems in linear parabolic equations. In this paper, We extend such a technique to identify some nonlinear diffusion coefficients depending on an unknown space dependent function in one dimensional parabolic models. For the coefficient recovery process, we present detailed error estimates and to illustrate the performance of the algorithms, several numerical examples are included. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2187 / 2199
页数:13
相关论文
共 50 条
  • [41] Arnold diffusion of the discrete nonlinear Schrodinger equation
    Li, Y. Charles
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2006, 3 (03) : 235 - 258
  • [42] AN INVERSE COEFFICIENT PROBLEM FOR A NONLINEAR REACTION DIFFUSION EQUATION WITH A NONLINEAR SOURCE
    Tatar, Salih
    Ulusoy, Suleyman
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [43] SPATIALLY DISCRETE NONLINEAR DIFFUSION-EQUATIONS
    CAHN, JW
    CHOW, SN
    VANVLECK, ES
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (01) : 87 - 118
  • [44] Identification of the diffusion coefficient for a semi-linear hyperbolic-parabolic problem with discontinuous nonlinear terms
    Pousin, J
    Roukbi, A
    COMPUTATIONAL GEOSCIENCES, 1998, 2 (03) : 241 - 258
  • [45] Identification of the diffusion coefficient for a semi-linear hyperbolic-parabolic problem with discontinuous nonlinear terms
    J. Pousin
    A. Roukbi
    Computational Geosciences, 1998, 2 : 241 - 258
  • [46] Numerical Discretization for Nonlinear Diffusion Filter
    Mustaffa, I.
    Mizuar, I.
    Aminuddin, M. M. M.
    Dasril, Y.
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICOMEIA 2014), 2015, 1660
  • [47] NUMERICAL ANALYSIS OF A NONLINEAR DIFFUSION PROBLEM
    MOCK, MS
    JOURNAL OF THE ACM, 1971, 18 (03) : 373 - &
  • [48] Numerical simulation of inhomogeneous and nonlinear diffusion
    Sharma, Anurag
    Shishodia, Manmohan Singh
    Reddy, G. B.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (06): : 1193 - 1204
  • [49] NUMERICAL SOLUTION OF A NONLINEAR DIFFUSION PROBLEM
    HABERSTI.A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (05): : 684 - &
  • [50] Numerical identification of the leading coefficient of a parabolic equation
    Vabishchevich, P. N.
    Klibanov, M. V.
    DIFFERENTIAL EQUATIONS, 2016, 52 (07) : 855 - 862