Numerical identification of a nonlinear diffusion coefficient by discrete mollification

被引:6
|
作者
Mejia, Carlos E. [1 ]
Acosta, Carlos D. [2 ]
Saleme, Katerine I. [3 ]
机构
[1] Univ Nacl Colombia, Escuela Matemat, Medellin, Colombia
[2] Univ Nacl Colombia, Dept Matemat & Estadist, Manizales, Colombia
[3] Mississippi State Univ, Ctr Adv Vehicular Syst, Starkville, MS USA
关键词
Mollification; Parameter identification; Space-marching; FLOCCULATED SUSPENSIONS; 2-D IHCP; PARAMETERS; EQUATIONS;
D O I
10.1016/j.camwa.2011.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete mollification method is a convolution-based filtering procedure suitable for the regularization of ill-posed problems. Combined with explicit space-marching finite difference schemes, it provides stability and convergence for a variety of coefficient identification problems in linear parabolic equations. In this paper, We extend such a technique to identify some nonlinear diffusion coefficients depending on an unknown space dependent function in one dimensional parabolic models. For the coefficient recovery process, we present detailed error estimates and to illustrate the performance of the algorithms, several numerical examples are included. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2187 / 2199
页数:13
相关论文
共 50 条
  • [21] PARAMETER SELECTION BY DISCRETE MOLLIFICATION AND THE NUMERICAL-SOLUTION OF THE INVERSE HEAT-CONDUCTION PROBLEM
    MURIO, DA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 22 (01) : 25 - 34
  • [22] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [23] Identification of Diffusion Coefficient in Nonhomogeneous Landscapes
    Min, A.
    Reeve, John D.
    Xiao, Mingqing
    Xu, Dashun
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 290 - 297
  • [24] STABLE NUMERICAL FRACTIONAL DIFFERENTIATION BY MOLLIFICATION
    HAO, DN
    REINHARDT, HJ
    SEIFFARTH, F
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (5-6) : 635 - 659
  • [25] Numerical Solution of a Subdiffusion Equation with Variable Order Time Fractional Derivative and Nonlinear Diffusion Coefficient
    Lapin, A.
    Yanbarisov, R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (07) : 2790 - 2803
  • [26] Numerical Solution of a Subdiffusion Equation with Variable Order Time Fractional Derivative and Nonlinear Diffusion Coefficient
    A. Lapin
    R. Yanbarisov
    Lobachevskii Journal of Mathematics, 2023, 44 : 2790 - 2803
  • [28] Numerical identification of a sparse Robin coefficient
    Zhiyuan Sun
    Yuling Jiao
    Bangti Jin
    Xiliang Lu
    Advances in Computational Mathematics, 2015, 41 : 131 - 148
  • [29] MULTISCALE ANALYSIS BY MEANS OF DISCRETE MOLLIFICATION FOR ECG NOISE REDUCTION
    Pulgarin-Giraldo, Juan
    Acosta-Medina, Carlos
    Castellanos-Dominguez, German
    DYNA-COLOMBIA, 2009, 76 (159): : 185 - 191
  • [30] Numerical identification of a sparse Robin coefficient
    Sun, Zhiyuan
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (01) : 131 - 148