The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions

被引:10
|
作者
Feng, Xue [1 ]
Ben Tahar, Mabrouk [1 ]
Baccouche, Ryan [1 ]
机构
[1] Univ Technol Compiegne, Univ Paris 04, CNRS Roberval 7337, Ctr Rech Royallieu,CS 60319, F-60203 Compiegne, France
来源
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA | 2016年 / 139卷 / 01期
关键词
LINEARIZED EULER EQUATIONS; FINITE-ELEMENT METHODS; MEAN FLOW; ACOUSTIC PROPAGATION; NUMERICAL INVERSION; HARMONIC ACOUSTICS; LAPLACE TRANSFORMS; ACCURACY; WAVES;
D O I
10.1121/1.4939965
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a solution for aero-acoustic problems using the Galbrun equation in the time domain with a non-uniform steady mean flow in a two-dimensional coordinate system and the perfectly matched layer technique as the boundary conditions corresponding to an unbounded domain. This approach is based on an Eulerian-Lagrangian description corresponding to a wave equation written only in terms of the Lagrangian perturbation of the displacement. It is an alternative to the Linearized Euler Equations for solving aero-acoustic problems. The Galbrun equation is solved using a mixed pressure-displacement Finite Element Method. A complex Laplace transform scheme is used to study the time dependent variables. Several numerical examples are presented to validate and illustrate the efficiency of the proposed approach. (C) 2016 Acoustical Society of America.
引用
收藏
页码:320 / 331
页数:12
相关论文
共 50 条
  • [31] Complex Frequency Shifted Perfectly Matched Layer Boundary Conditions for Frequency-Domain Elastic Wavefield Simulations
    Zhao, Zhencong
    Chen, Jingyi
    Xu, Minghua
    Liu, Xiaobo
    PURE AND APPLIED GEOPHYSICS, 2019, 176 (06) : 2529 - 2542
  • [32] Complex Frequency Shifted Perfectly Matched Layer Boundary Conditions for Frequency-Domain Elastic Wavefield Simulations
    Zhencong Zhao
    Jingyi Chen
    Minghua Xu
    Xiaobo Liu
    Pure and Applied Geophysics, 2019, 176 : 2529 - 2542
  • [33] Iterative solution of 3D acoustic wave equation with perfectly matched layer boundary condition and multigrid preconditioner
    Pan, Guangdong
    Abubakar, Aria
    GEOPHYSICS, 2013, 78 (05) : T133 - T140
  • [34] Weak-form time-domain perfectly matched layer
    Xie Zhi-Nan
    Zhang Xu-Bin
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (10): : 3823 - 3831
  • [35] A HIGHLY ACCURATE PERFECTLY-MATCHED-LAYER BOUNDARY INTEGRAL EQUATION SOLVER FOR ACOUSTIC LAYERED-MEDIUM PROBLEMS
    Lu, Wangtao
    Xu, Liwei
    Yin, Tao
    Zhang, Lu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : B523 - B543
  • [36] Optimum Loss Factor for a Perfectly Matched Layer in Finite-Difference Time-Domain Acoustic Simulation
    Mokhtari, Parham
    Takemoto, Hironori
    Nishimura, Ryouichi
    Kato, Hiroaki
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (05): : 1068 - 1071
  • [37] On the perfectly matched layer and the DB boundary condition
    Tedeschi, Nicola
    Frezza, Fabrizio
    Sihvola, Ari
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (10) : 1941 - 1946
  • [38] Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme
    Al Bader, SJ
    Jamid, HA
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1998, 8 (11): : 357 - 359
  • [39] Finite element beam propagation method with perfectly matched layer boundary conditions
    Koshiba, M
    Tsuji, Y
    Hikari, M
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1482 - 1485
  • [40] Perfectly Matched Layers for Frequency-Domain Integral Equation Acoustic Scattering Problems
    Alles, Erwin J.
    van Dongen, Koen W. A.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (05) : 1077 - 1086