Optimum Loss Factor for a Perfectly Matched Layer in Finite-Difference Time-Domain Acoustic Simulation

被引:7
|
作者
Mokhtari, Parham [1 ]
Takemoto, Hironori [1 ]
Nishimura, Ryouichi [1 ]
Kato, Hiroaki [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Kyoto 6190288, Japan
关键词
Acoustic simulation; finite-difference time-domain (FDTD); perfectly matched layer (PML); MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; ABSORPTIVE MEDIA; WAVES;
D O I
10.1109/TASL.2009.2035036
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A perfectly matched layer (PML) is commonly used in finite-difference time-domain (FDTD) simulation to absorb outgoing waves and thereby reduce artifactual reflections from the computational domain boundaries. However, previous two-dimensional studies have noted that increasing the PML loss factor does not monotonically improve the PML's performance. This paper evaluates the PML in three-dimensional FDTD acoustic simulations. It confirms the existence of an optimum loss factor, with higher values degrading PML performance. An empirical formula is offered for estimating the optimum loss factor for a linear or a quadratic profile, that depends on the PML depth, sound speed, and grid resolution.
引用
收藏
页码:1068 / 1071
页数:4
相关论文
共 50 条
  • [1] Multipole Perfectly Matched Layer for Finite-Difference Time-Domain Electromagnetic Modeling
    Giannopoulos, Antonios
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (06) : 2987 - 2995
  • [2] Finite-Difference Time-Domain Simulation of Strong-Field Ionization: A Perfectly Matched Layer Approach
    Kamban, Hogni C.
    Christensen, Sigurd S.
    Sondergaard, Thomas
    Pedersen, Thomas G.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (05):
  • [3] Stable perfectly-matched-layer boundary conditions for finite-difference time-domain simulation of acoustic waves in piezoelectric crystals
    Cooper, J. D.
    Valavanis, A.
    Ikonic, Z.
    Harrison, P.
    Cunningham, J. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 239 - 246
  • [4] Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations
    Shyroki, D. M.
    Lavrinenko, A. V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (10): : 3506 - 3514
  • [5] The perfectly matched layer boundary condition for scalar finite-difference time-domain method
    Zhou, D
    Huang, WP
    Xu, CL
    Fang, DG
    Chen, B
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (05) : 454 - 456
  • [6] Implementation of Perfectly Matched Layer Boundary Condition for Finite-Difference Time-Domain Simulation Truncated With Gain Medium
    Wang, Qian
    Ho, Seng-Tiong
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (10) : 1453 - 1459
  • [7] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    G. Ögücü
    T. Ege
    Electrical Engineering, 2003, 85 : 109 - 111
  • [8] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    Ögücü, G
    Ege, T
    ELECTRICAL ENGINEERING, 2003, 85 (02) : 109 - 111
  • [9] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
    刘亚文
    陈亦望
    张品
    刘宗信
    Chinese Physics B, 2014, 23 (12) : 170 - 180
  • [10] Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials
    Udagedara, Indika
    Premaratne, Malin
    Rukhlenko, Ivan D.
    Hattori, Haroldo T.
    Agrawal, Govind P.
    OPTICS EXPRESS, 2009, 17 (23): : 21179 - 21190