An efficient offline implementation for output feedback min-max MPC

被引:38
|
作者
Hu, Jianchen [1 ]
Ding, Baocang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Dept Automat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
model predictive control; offline approach; output feedback; uncertain system; MODEL-PREDICTIVE CONTROL; LPV SYSTEMS; STABILITY;
D O I
10.1002/rnc.4401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Previous works have presented the output feedback min-max model predictive control (MPC) for the discrete-time system with both polytopic uncertainty and bounded persistent disturbance, where the controller parameters are optimized at each sampling instant. This paper proposes the corresponding offline approach in order to reduce the online computational burden. Such offline MPC, when the state is measurable and there is no disturbance, has been constructed in the work of Wan and Kothare (An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica. 2003;39(5):837-846). Since this paper considers the case when the true state is unknown, the ellipsoidal regions of attraction (applying only to the estimated state) lose their asymptotic invariance property, and the estimation error set (EES) has a major effect on the control performance. This paper refreshes EES invoking the one-step reachable set and guarantees that the signals being penalized in the performance cost function to converge to a neighborhood of the equilibrium point. Two examples are given to illustrate the effectiveness of the approach.
引用
收藏
页码:492 / 506
页数:15
相关论文
共 50 条
  • [41] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [42] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [43] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [44] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [45] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [46] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    [J]. ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [47] A min-max theorem on feedback vertex sets (Preliminary version)
    Cai, MC
    Deng, XT
    Zang, WN
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 73 - 86
  • [48] Piecewise affinity of min-max MPC with bounded additive uncertainties and a quadratic criterion
    Ramirez, DR
    Camacho, EF
    [J]. AUTOMATICA, 2006, 42 (02) : 295 - 302
  • [49] Robustly stable feedback min-max model predictive control
    Kerrigan, EC
    Maciejowski, JM
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3490 - 3495
  • [50] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192