Robustly stable feedback min-max model predictive control

被引:0
|
作者
Kerrigan, EC [1 ]
Maciejowski, JM [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
min-max problems; robust control; optimal control; receding horizon control; parametric programming; piecewise linear control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the practical real-time implementability of robustly stable model predictive control (MPC) when constraints are present on the inputs and the states. We assume that the plant model is known, is discrete-time and linear time-invariant, is subject to unknown but bounded state disturbances and that the states of the system are measured. In this paper we introduce a new stage cost and show that the use of this cost allows one to formulate a robustly stable MPC problem that can be solved using a single linear program. Furthermore, this is a multi-parametric linear program, which implies that the receding horizon control (RHC) law is piecewise affine, and can be explicitly pre-computed, so that the linear program does not have to be solved on-line.
引用
收藏
页码:3490 / 3495
页数:6
相关论文
共 50 条
  • [1] Min-max feedback model predictive control with state estimation
    Jia, D
    Krogh, B
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 262 - 267
  • [2] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [3] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [4] Min-max feedback model predictive control for distributed control with communication
    Jia, D
    Krogh, B
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4507 - 4512
  • [5] Min-max feedback model predictive control for constrained linear systems
    Scokaert, POM
    Mayne, DQ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (08) : 1136 - 1142
  • [6] Min-Max Economic Model Predictive Control
    Marquez, Alejandro
    Patino, Julian
    Espinosa, Jairo
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4410 - 4415
  • [7] Feedback min-max model predictive control based on a quadratic cost function
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1575 - +
  • [8] Min-max model predictive control as a quadratic program
    de la Pena, D. Munoz
    Alamo, T.
    Ramirez, D. R.
    Camacho, E. F.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01): : 328 - 333
  • [9] Min-Max Model Predictive Control of a pilot plant
    Gruber, J. K.
    Ramirez, D. R.
    Alamo, T.
    Bordons, C.
    Camacho, E. F.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1115 - 1120
  • [10] Min-max coalitional model predictive control algorithm
    Maxim, Anca
    Maestre, Jose M.
    Caruntu, Constantin F.
    Lazar, Corneliu
    2019 22ND INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS), 2019, : 24 - 29