Comparison of Denoising Methods in Diffusion Tensor Imaging

被引:0
|
作者
Johnson, Solwin [1 ]
Balakrishnan, Arun A. [1 ]
机构
[1] Rajagiri Sch Engn & Technol, Dept Appl Elect & Instrumentat, Cochin, Kerala, India
关键词
Diffusion Tensor Imaging (DTI); Diffusion weighted (DW) image; Non linear adaptive gaussian method; Peak signal-to-noise ratio (PSNR); Mean structural similarity index measure (MSSIM);
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a non linear adaptive gaussian denoising method for diffusion tensor imaging (DTI) is proposed. DTI image are of poor SNR and low resolution images. In order to improve DTI, the proposed method is applied to the diffusion weighted images (DWI) from which DTI is computed. The anisotropic flow principle is used in non linear adaptive gaussian denoising method and smoothing will vary according to the anisotropic flow. The proposed method is compared with the scalar Partial Differential Equation (PDE) denoising method. The non linear adaptive gaussian denoising method shows better performance compared to scalar PDE. To evaluate the efficiency of both denoising methods, image quality metrics like peak signal-to-noise ratio (PSNR) and mean structural similarity index measure (MSSIM) are used. The experimental results indicate the good performance of proposed method and it has a better denoising effect in DTI compared to scalar PDE.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Weighted wiener method in the denoising of diffusion tensor images
    Yisanli
    Chenzhencheng
    Linghongli
    Liwen
    Jiangpei
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [32] Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging
    Özarslan, E
    Mareci, TH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) : 955 - 965
  • [33] Robust tensor estimation in diffusion tensor imaging
    Maximov, Ivan I.
    Grinberg, Farida
    Shah, N. Jon
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2011, 213 (01) : 136 - 144
  • [34] Denoising diffusion tensor images: Preprocessing for automated detection of subtle diffusion tensor abnormalities between populations
    Lee, Tin Man
    Sinha, Usha
    [J]. MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [35] Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes
    Whitwell, Jennifer L.
    Schwarz, Christopher G.
    Reid, Robert I.
    Kantarci, Kejal
    Jack, Clifford R., Jr.
    Josephs, Keith A.
    [J]. PARKINSONISM & RELATED DISORDERS, 2014, 20 (05) : 493 - 498
  • [36] A study on the comparison of median filter regularization methods in diffusion tensor MRI
    Kim, Sunghee
    Kwon, Kiwoon
    Park, Insung
    Han, Bongsu
    Kim, Dongyoun
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3454 - +
  • [37] Comparison of scalar measures used in magnetic resonance diffusion tensor imaging
    Bahn, MM
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1999, 139 (01) : 1 - 7
  • [38] Which Manifold Should be Used for Group Comparison in Diffusion Tensor Imaging?
    Bouchon, A.
    Noblet, V.
    Heitz, F.
    Lamy, J.
    Blanc, F.
    Armspach, J-P
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 158 - 165
  • [39] Diffusion tensor imaging in schizophrenia
    Buchsbaum, M. S.
    Haznedar, M.
    Hazlett, E.
    Torosjan, Y.
    Chu, K. W.
    Newmark, R.
    Tang, C.
    Stewart, D.
    Friedman, J.
    [J]. INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2006, 9 : S42 - S42
  • [40] Diffusion tensor distribution imaging
    Topgaard, Daniel
    [J]. NMR IN BIOMEDICINE, 2019, 32 (05)