On the second-order asymptotics for entanglement-assisted communication

被引:39
|
作者
Datta, Nilanjana [1 ]
Tomamichel, Marco [2 ,3 ]
Wilde, Mark M. [4 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] Louisiana State Univ, Dept Phys & Astron, Ctr Computat & Technol, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
基金
新加坡国家研究基金会;
关键词
Quantum Shannon theory; Second-order asymptotics; Entanglement-assisted communication; CLASSICAL CAPACITY; STRONG CONVERSE; QUANTUM; CHANNEL; INFORMATION; BREAKING; IMPLIES; STATE;
D O I
10.1007/s11128-016-1272-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon's classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.
引用
收藏
页码:2569 / 2591
页数:23
相关论文
共 50 条
  • [31] Communication Complexity of Entanglement-Assisted Multi-Party Computation
    Meng, Ruoyu
    Ramamoorthy, Aditya
    ENTROPY, 2024, 26 (11)
  • [32] Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication
    Shen Chen Xu
    Mark M. Wilde
    Quantum Information Processing, 2013, 12 : 641 - 683
  • [33] Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication
    Xu, Shen Chen
    Wilde, Mark M.
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 641 - 683
  • [34] One-Shot Entanglement-Assisted Quantum and Classical Communication
    Datta, Nilanjana
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (03) : 1929 - 1939
  • [35] Optimal entanglement-assisted one-shot classical communication
    Hemenway, Brett
    Miller, Carl A.
    Shi, Yaoyun
    Wootters, Mary
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [36] Entanglement-assisted private communication over quantum broadcast channels
    Qi, Haoyu
    Sharma, Kunal
    Wilde, Mark M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (37)
  • [37] Second-Order Asymptotics for Source Coding, Dense Coding, and Pure-State Entanglement Conversions
    Datta, Nilanjana
    Leditzky, Felix
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 582 - 608
  • [38] Entanglement-Assisted Absorption Spectroscopy
    Shi, Haowei
    Zhang, Zheshen
    Pirandola, Stefano
    Zhuang, Quntao
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [39] SECOND-ORDER ASYMPTOTICS FOR QUANTUM HYPOTHESIS TESTING
    Li, Ke
    ANNALS OF STATISTICS, 2014, 42 (01): : 171 - 189
  • [40] Second-Order Asymptotics of Sequential Hypothesis Testing
    Li, Yonglong
    Tan, Vincent Y. F.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1295 - 1300