On the second-order asymptotics for entanglement-assisted communication

被引:39
|
作者
Datta, Nilanjana [1 ]
Tomamichel, Marco [2 ,3 ]
Wilde, Mark M. [4 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[4] Louisiana State Univ, Dept Phys & Astron, Ctr Computat & Technol, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
基金
新加坡国家研究基金会;
关键词
Quantum Shannon theory; Second-order asymptotics; Entanglement-assisted communication; CLASSICAL CAPACITY; STRONG CONVERSE; QUANTUM; CHANNEL; INFORMATION; BREAKING; IMPLIES; STATE;
D O I
10.1007/s11128-016-1272-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon's classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.
引用
收藏
页码:2569 / 2591
页数:23
相关论文
共 50 条
  • [21] Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity
    Hao, Shuhong
    Shi, Haowei
    Li, Wei
    Shapiro, Jeffrey H.
    Zhuang, Quntao
    Zhang, Zheshen
    PHYSICAL REVIEW LETTERS, 2021, 126 (25)
  • [22] Fault-Tolerant Coding for Entanglement-Assisted Communication
    Belzig, Paula
    Christandl, Matthias
    Muller-Hermes, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (04) : 2655 - 2673
  • [23] Second-order asymptotics of mutual information
    Prelov, VV
    Verdú, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1567 - 1580
  • [24] Studying entanglement-assisted entanglement transformation
    Hsu, LY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (47): : 11439 - 11446
  • [25] Optimized receiver design for entanglement-assisted communication using BPSK
    Hadani, Rahul b
    Jordjevic, Ivan b. d
    OPTICS EXPRESS, 2023, 31 (24) : 39765 - 39783
  • [26] Contextuality in Entanglement-assisted One-shot Classical Communication
    Yadavalli, Shiv Akshar
    Kunjwal, Ravi
    QUANTUM, 2022, 6
  • [27] Optimal signal detection in entanglement-assisted quantum communication systems
    Ban, M
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2002, 4 (02) : 143 - 148
  • [28] Optimal entanglement-assisted electromagnetic sensing and communication in the presence of noise
    Shi, Haowei
    Zhang, Bingzhi
    Shapiro, Jeffrey H.
    Zhang, Zheshen
    Zhuang, Quntao
    PHYSICAL REVIEW APPLIED, 2024, 21 (03)
  • [29] Interplays between classical and quantum entanglement-assisted communication scenarios
    Vieira, Carlos
    de Gois, Carlos
    Pollyceno, Lucas
    Rabelo, Rafael
    NEW JOURNAL OF PHYSICS, 2023, 25 (11):
  • [30] Entanglement-assisted quantum communication beating the quantum Singleton bound
    Grassl, Markus
    PHYSICAL REVIEW A, 2021, 103 (02)