On Randic, Seidel, and Laplacian Energy of NEPS Graph

被引:0
|
作者
Han, Kun [1 ]
Ahmad, S. [2 ]
Kirmani, Syed Ajaz K. [3 ]
Siddiqui, M. K. [2 ]
Ali, Y. [2 ]
Bashier, E. [4 ]
机构
[1] Wuhan Polytech Univ, Sch Management, Wuhan, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Qassim Univ, Coll Engn, Dept Elect Engn, Unaizah, Saudi Arabia
[4] Univ Khartoum, Fac Math Sci, Dept Appl Math, Khartoum, Sudan
关键词
D O I
10.1155/2022/6553359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Z(i). In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph P-n with any base B. Here, n denotes the number of vertices and i denotes the number of copies of path graph P-n. Some of the results depend on the number of zeroes in base elements, for which we use the notation j.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Relation between signless Laplacian energy, energy of graph and its line graph
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 91 - 107
  • [42] On Randic energy
    Gutman, Ivan
    Furtula, Boris
    Bozkurt, S. Burcu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 50 - 57
  • [43] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [44] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, Shariefuddin
    Khan, Saleem
    arXiv, 2022,
  • [45] Energy and NEPS of graphs
    Stevanovic, D
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (01): : 67 - 74
  • [46] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [47] Randic and reciprocal randic spectral radii and energies of some graph operations
    Bilal, Ahmad
    Munir, Muhammad Mobeen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5719 - 5729
  • [48] Laplacian Energy of a Graph with Self-Loops
    Anchan, Deekshitha Vivek
    D'Souza, Sabitha
    Gowtham, H. J.
    Bhat, Pradeep G.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (01) : 247 - 258
  • [49] ON DISTANCE LAPLACIAN ENERGY IN TERMS OF GRAPH INVARIANTS
    Ganie, Hilal A. A.
    Shaban, Rezwan Ul
    Rather, Bilal A. A.
    Pirzada, Shariefuddin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 335 - 353
  • [50] On Laplacian-energy-like invariant of a graph
    Wang, Weizhong
    Luo, Yanfeng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 713 - 721