On Randic, Seidel, and Laplacian Energy of NEPS Graph

被引:0
|
作者
Han, Kun [1 ]
Ahmad, S. [2 ]
Kirmani, Syed Ajaz K. [3 ]
Siddiqui, M. K. [2 ]
Ali, Y. [2 ]
Bashier, E. [4 ]
机构
[1] Wuhan Polytech Univ, Sch Management, Wuhan, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Qassim Univ, Coll Engn, Dept Elect Engn, Unaizah, Saudi Arabia
[4] Univ Khartoum, Fac Math Sci, Dept Appl Math, Khartoum, Sudan
关键词
D O I
10.1155/2022/6553359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Z(i). In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph P-n with any base B. Here, n denotes the number of vertices and i denotes the number of copies of path graph P-n. Some of the results depend on the number of zeroes in base elements, for which we use the notation j.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the computation of Seidel Laplacian eigenvalues for graph-based binary codes
    Mesnager, Sihem
    Raja, Rameez
    Wagay, Samir Ahmad
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [22] Some relations between energy and Seidel energy of a graph
    Ramane, Harishchandra S.
    Parvathalu, B.
    Ashoka, K.
    Patil, Daneshwari
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (01) : 46 - 59
  • [23] Signless Laplacian energy of a graph and energy of a line graph
    Ganie, Hilal A.
    Chat, Bilal A.
    Pirzada, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 306 - 324
  • [24] GENERAL RANDIC ENERGY OF GRAPHS USING GRAPH OPERATIONS
    Vaidya, S. K.
    Rathod, G. K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 1 - 13
  • [25] Seidel energy of a graph with self-loops
    Harshitha, A.
    D'Souza, Sabitha
    Nayak, Swati
    Gutman, Ivan
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [26] Laplacian Energy of a Fuzzy Graph
    Sharbaf, Sadegh Rahimi
    Fayazi, Fatmeh
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 5 (01): : 1 - 10
  • [27] Randic structure of a graph
    Rada, J
    Uzcátegui, C
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (2-3) : 447 - 463
  • [28] On the Randic matrix and Randic energy
    Hatefi, H.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [29] Randic Energy and Randic Eigenvalues
    Li, Xueliang
    Wang, Jianfeng
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 73 (01) : 73 - 80
  • [30] Randic Matrix and Randic Energy
    Bozkurt, S. Burcu
    Gungor, A. Dilek
    Gutman, Ivan
    Cevik, A. Sinan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 239 - 250