On Randic, Seidel, and Laplacian Energy of NEPS Graph

被引:0
|
作者
Han, Kun [1 ]
Ahmad, S. [2 ]
Kirmani, Syed Ajaz K. [3 ]
Siddiqui, M. K. [2 ]
Ali, Y. [2 ]
Bashier, E. [4 ]
机构
[1] Wuhan Polytech Univ, Sch Management, Wuhan, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
[3] Qassim Univ, Coll Engn, Dept Elect Engn, Unaizah, Saudi Arabia
[4] Univ Khartoum, Fac Math Sci, Dept Appl Math, Khartoum, Sudan
关键词
D O I
10.1155/2022/6553359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z be the simple graph; then, we can obtain the energy EZ of a graph Z by taking the absolute sum of the eigenvalues of the adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum (NEPS) of graph Z(i). In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph P-n with any base B. Here, n denotes the number of vertices and i denotes the number of copies of path graph P-n. Some of the results depend on the number of zeroes in base elements, for which we use the notation j.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Laplacian Minimum covering Randic Energy of a Graph
    Kanna, M. R. Rajesh
    Jagadeesh, R.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (02): : 167 - 188
  • [2] Seidel Laplacian and Seidel Signless Laplacian Energies of Commuting Graph for Dihedral Groups
    Romdhini, Mamika Ujianita
    Nawawi, Athirah
    Syechah, Bulqis Nebula
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2024, 20 (03): : 701 - 713
  • [3] Randic Energy and Randic Estrada Index of a Graph
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (01): : 88 - 96
  • [4] On the Eigenvalues and Energy of the Seidel and Seidel Laplacian Matrices of Graphs
    Askari, J.
    Das, Kinkar Chandra
    Shang, Yilun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2024, 2024
  • [5] Energy of a graph and Randic index
    Arizmendi, Gerardo
    Arizmendi, Octavio
    Linear Algebra and Its Applications, 2022, 609 : 332 - 338
  • [6] Bounds on graph energy and Randic energy
    Altindag, S. Burcu Bozkurt
    DISCRETE MATHEMATICS LETTERS, 2021, 7 : 52 - 57
  • [7] Energy of a graph and Randic index
    Arizmendi, Gerardo
    Arizmendi, Octavio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 332 - 338
  • [8] Seidel Laplacian Energy of Fuzzy graphs
    Sivaranjani K.
    Sundaram O.V.S.
    Akalyadevi K.
    EAI Endorsed Transactions on Energy Web, 2024, 11 : 1 - 6
  • [9] On Seidel Laplacian matrix and energy of graphs
    Yalcin, N. Feyza
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 104 - 118
  • [10] New Bounds on the Normalized Laplacian (Randic) Energy
    Maden, A. Dilek
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 321 - 330