De Rham-Witt sheaves via algebraic cycles

被引:4
|
作者
Krishna, Amalendu [1 ]
Park, Jinhyun [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai, Maharashtra, India
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
algebraic cycles; de Rham-Witt complex; crystalline cohomology; HIGHER CHOW GROUPS; MILNOR K-THEORY; MOVING LEMMA; COMPLEX; FIELD; RINGS;
D O I
10.1112/S0010437X21007478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham-Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham-Witt sheaves. Several applications are derived.
引用
收藏
页码:2089 / 2132
页数:45
相关论文
共 50 条