A NOTE ON THE ALGEBRAIC DE RHAM UNIVERSAL CLASSES

被引:0
|
作者
Golasinski, Marek [1 ]
Gomez Ruiz, Francisco [2 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54 St, PL-10710 Olsztyn, Poland
[2] Univ Malaga, Fac Ciencias, Dept Algebra Geometra & Topol, Campus Univ Teatinos, E-29071 Malaga, Spain
关键词
algebraic de Rham cohomology; Grassmannian; idempotent matrix; universal Chern class;
D O I
10.4310/HHA.2017.v19.n2.a11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper contains the algebraic analog of universal classifying bundles and Chern classes. We imitate the topological counterpart of universal bundles over the Grassmannian to construct some graded commutative differential algebras Omega*(K[X]/(X-2 - X, trX - r)) and Omega(K[X]/{X-2 - X)), whose corresponding cohomology are polynomial algebras isomorphic to K[c(1),...,c(r)] and K[c(1), C-2,...] respectively, for the Chern classes c(p) with p >= 1, for the field K = Q, R or C. Here X denotes the infinite matrix X = [X-pq], X-n denotes the corresponding matrix obtained from X by setting to zero the entries X-pq when p > n or q > n, and (X-2 - X, trX - r) (resp. (X-2 - X)) denotes the ideal generated by the power series Sigma(p) X-pp - r and the entries of the matrix X-2 - X (resp. the entries of X-2 - X).
引用
收藏
页码:199 / 218
页数:20
相关论文
共 50 条