An amorphous silicon random nanocone/polymer hybrid solar cell

被引:21
|
作者
Pei, Zingway [1 ]
Thiyagu, Subramani [1 ]
Jhong, Ming-Sian [1 ]
Hsieh, Wei-Shang [1 ]
Cheng, Shor-Jen [1 ]
Ho, Min-Wei [1 ]
Chen, Yu-Hung [2 ]
Liu, Jun-Chin [2 ]
Yeh, Chun-Ming [2 ]
机构
[1] Natl Chung Hsing Univ, Grad Inst Optoelect Engn, Dept Elect Engn, Taichung 40227, Taiwan
[2] ITRI, Photovolta Technol Div, Green Energy & Environm Res Labs GEL, Hsinchu 31040, Taiwan
关键词
Random nanocones; Amorphous silicon; Hybrid solar cell; PHOTOVOLTAIC DEVICES; POLYMER; NANOPARTICLES; EFFICIENCY;
D O I
10.1016/j.solmat.2011.04.021
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes and experimentally demonstrates an a-Si:H random nanocone/PEDOT:PSS/P3HT:PCBM hybrid solar cell to extend the absorption to near infrared and solve the difficulty of carrier transport through organic-inorganic interface. The internal electrical field inside a-Si:H random nanocone force holes move to the anode and electrons move to the cathode. The insertion of a layer of PEDOT:PSS conducting polymer between organic-inorganic interface could cause electrons and holes to partially recombine, thus establishing an electrically connected a-Si:H and P3HT:PCBM bulk heterojunction, which enables carriers transport through organic-inorganic interfaces efficiently. As compared to conventional polymer solar cells, the open-circuit voltage of hybrid solar cells was increased from 0.51 to 0.78 V. Additionally, the power conversion efficiency was increased from 1.73% to 2.22%, which demonstrates approximately 28% enhancement, indicating that the hybrid structure could largely increase the efficiency of polymer solar cells. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2431 / 2436
页数:6
相关论文
共 50 条
  • [31] Sputtered hydrogenated amorphous silicon for silicon heterojunction solar cell fabrication
    Zhang, Xinyu
    Cuevas, Andres
    Demaurex, Benedicte
    De Wolf, Stefaan
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2014), 2014, 55 : 865 - 872
  • [32] AMORPHOUS-SILICON SOLAR-CELL TECHNOLOGIES
    YOSHIDA, T
    ICHIKAWA, Y
    SAKAI, H
    OPTOELECTRONICS-DEVICES AND TECHNOLOGIES, 1994, 9 (04): : 577 - 588
  • [33] COMPUTER MODEL OF AMORPHOUS SILICON SOLAR CELL.
    Swartz, G.A.
    1600, (53):
  • [34] Effect of light trapping in an amorphous silicon solar cell
    Iftiquar, S. M.
    Jung, Juyeon
    Park, Hyeongsik
    Cho, Jaehyun
    Shin, Chonghoon
    Park, Jinjoo
    Jung, Junhee
    Bong, Sungjae
    Kim, Sunbo
    Yi, Junsin
    THIN SOLID FILMS, 2015, 587 : 117 - 125
  • [35] Hydrogenated amorphous silicon transverse junction solar cell
    Kroon, MA
    van Swaaij, RACMM
    Zeman, M
    Kuznetsov, VI
    Metselaar, JW
    APPLIED PHYSICS LETTERS, 1998, 72 (02) : 209 - 210
  • [36] Theory of amorphous silicon solar cell (a): numerical analysis
    Dhariwal, SR
    Rajvanshi, S
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 79 (02) : 199 - 213
  • [37] Status of amorphous silicon solar cell technologies in Japan
    Sakai, Hiroshi
    Solar Energy Materials and Solar Cells, 1994, 34 (1 -4 pt 1): : 9 - 17
  • [38] AMORPHOUS SILICON SOLAR CELL BY THERMAL EVAPORATION.
    Makadsi, M.N.
    Al-Robaee, M.S.
    Magallat buhut al-taqat al-Samsiyyat, 1985, 3 (02): : 1 - 9
  • [39] MONOLITHIC SOLAR-CELL PANEL OF AMORPHOUS SILICON
    HANAK, JJ
    SOLAR ENERGY, 1979, 23 (02) : 145 - 147
  • [40] AMORPHOUS SILICON - PROMISING SOLAR CELL MATERIAL.
    Mohan, T.R.Rama
    Metallurgical Engineer - I.I.T. Bombay, 1979, 11-12 : 26 - 33