Wake-sleep transition as a noisy bifurcation

被引:13
|
作者
Yang, Dong-Ping [1 ,2 ]
McKenzie-Sell, Lauren [1 ]
Karanjai, Angela [1 ]
Robinson, P. A. [1 ,2 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[2] Univ Sydney, Ctr Integrat Brain Funct, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
ASCENDING AROUSAL SYSTEM; MATHEMATICAL-MODELS; QUANTITATIVE MODEL; SLOWING-DOWN; DEPRIVATION; WAKEFULNESS; PRECURSOR; NETWORKS; DYNAMICS; FATIGUE;
D O I
10.1103/PhysRevE.94.022412
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A recent physiologically based model of the ascending arousal system is used to analyze the dynamics near the transition from wake to sleep, which corresponds to a saddle-node bifurcation at a critical point. A normal form is derived by approximating the dynamics by those of a particle in a parabolic potential well with dissipation. This mechanical analog is used to calculate the power spectrum of fluctuations in response to a white noise drive, and the scalings of fluctuation variance and spectral width are derived versus distance from the critical point. The predicted scalings are quantitatively confirmed by numerical simulations, which show that the variance increases and the spectrum undergoes critical slowing, both in accord with theory. These signals can thus serve as potential precursors to indicate imminent wake-sleep transition, with potential application to safety-critical occupations in transport, air-traffic control, medicine, and heavy industry.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] 'Wake-sleep' algorithm for unsupervised neural networks
    Hinton, G.E.
    Dayan, P.
    Frey, B.J.
    Neal, R.M.
    Science, 1995, 268 (5214):
  • [22] Principal component structure of wake-sleep transition. Quantitative description in multiple sleep latency tests
    Putilov A.A.
    Somnologie - Schlafforschung und Schlafmedizin, 2010, 14 (3) : 234 - 243
  • [23] THE WAKE-SLEEP ALGORITHM FOR UNSUPERVISED NEURAL NETWORKS
    HINTON, GE
    DAYAN, P
    FREY, BJ
    NEAL, RM
    SCIENCE, 1995, 268 (5214) : 1158 - 1161
  • [24] Wake-Sleep Variational Autoencoders for Language Modeling
    Shen, Xiaoyu
    Su, Hui
    Niu, Shuzi
    Klakow, Dietrich
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 405 - 414
  • [25] A single channel wake-sleep detection system
    Wang, Y.
    Kaplan, R. F.
    Bootzin, R. R.
    Loparo, K. A.
    SLEEP, 2008, 31 : A333 - A333
  • [26] Disturbances of the wake-sleep cycle and its dissolution
    Oganesyan, GA
    JOURNAL OF EVOLUTIONARY BIOCHEMISTRY AND PHYSIOLOGY, 1998, 34 (04) : 351 - 355
  • [27] ACTION OF LITHIUM ON WAKE-SLEEP BALANCE OF CAT
    LARDENNOIS, D
    LANOIR, J
    JOURNAL DE PHARMACOLOGIE, 1974, 5 : 58 - 58
  • [28] Enhanced Frontoparietal Synchronized Activation During the Wake-Sleep Transition in Patients with Primary Insomnia
    Corsi-Cabrera, Maria
    Figueredo-Rodriguez, Pedro
    del Rio-Portilla, Yolanda
    Sanchez-Romero, Jorge
    Galan, Lidice
    Bosch-Bayard, Jorge
    SLEEP, 2012, 35 (04) : 501 - 511
  • [29] Autonomic changes during wake-sleep transition: A heart rate variability based approach
    Shinar, Zvi
    Akselrod, Solange
    Dagan, Yaron
    Baharav, Armanda
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2006, 130 (1-2): : 17 - 27
  • [30] Human parahippocampal activity:: non-REM and REM elements in wake-sleep transition
    Bódizs, R
    Sverteczki, M
    Lázár, AS
    Halász, P
    BRAIN RESEARCH BULLETIN, 2005, 65 (02) : 169 - 176