VESUNETDeep: A Fully Convolutional Deep Learning Architecture for Automated Vessel Segmentation

被引:1
|
作者
Atli, Ibrahim [1 ]
Gedik, O. Serdar [1 ]
机构
[1] Ankara Yildmm Beyazit Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey
关键词
vessel segmentation; fully convolutional; deep learning; NETWORK;
D O I
10.1109/siu.2019.8806597
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation of blood vessels has a lot attention in medical image processing because of its use in the diagnosis of diseases. Although manual segmentation is possible for each patient, it is a laborious and repetitive task which requires professional skills. Thus, many methods have been proposed in the literature, from hand-designed filters to learning-based approaches and machine learning-based approaches outperform hand-designed filters. In this study, we propose an automated, fast and robust deep learning architecture for improving the performance of vessel segmentation. The segmentation performance is compared with the methods in the literature in terms of accuracy, sensitivity, specificity and area under curve (AUC) metrics. Moreover, the proposed deep learning architecture, VESUNETDeep, is tested with and without pre-processing of the input signal. It has been found that the pre-processing step increases sensitivity but decreases a small amount of other metrics. Finally, VESUNETDeep architecture is superior in terms of accuracy, specificity and AUC metrics.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Improving Deep Learning Based Liver Vessel Segmentation Using Automated Connectivity Analysis
    Thielke, Felix
    Kock, Farina
    Haensch, Annika
    Georgii, Joachim
    Abolmaali, Nasreddin
    Endo, Itaru
    Meine, Hans
    Schenk, Andrea
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [32] A fully automated deep learning pipeline for high-throughput colony segmentation and classification
    Carl, Sarah H.
    Duempelmann, Lea
    Shimada, Yukiko
    Buhler, Marc
    BIOLOGY OPEN, 2020, 9 (06):
  • [33] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmer, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2017, 7
  • [34] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    Scientific Reports, 7
  • [35] Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images
    Podda, Alessandro Sebastian
    Balia, Riccardo
    Barra, Silvio
    Carta, Salvatore
    Fenu, Gianni
    Piano, Leonardo
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [36] Towards fully automated segmentation of rat cardiac MRI by leveraging deep learning frameworks
    Daniel Fernández-Llaneza
    Andrea Gondová
    Harris Vince
    Arijit Patra
    Magdalena Zurek
    Peter Konings
    Patrik Kagelid
    Leif Hultin
    Scientific Reports, 12
  • [37] Fully Automated FDG and PSMA Lesion Segmentation in PET Imaging via Deep Learning
    Pires, M.
    Ferrara, D.
    Beyer, T.
    Sundar, L. K. Shiyam
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S348 - S348
  • [38] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Kai Roman Laukamp
    Frank Thiele
    Georgy Shakirin
    David Zopfs
    Andrea Faymonville
    Marco Timmer
    David Maintz
    Michael Perkuhn
    Jan Borggrefe
    European Radiology, 2019, 29 : 124 - 132
  • [39] Towards fully automated segmentation of rat cardiac MRI by leveraging deep learning frameworks
    Fernandez-Llaneza, Daniel
    Gondova, Andrea
    Vince, Harris
    Patra, Arijit
    Zurek, Magdalena
    Konings, Peter
    Kagelid, Patrik
    Hultin, Leif
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning
    Kang, Ho
    Witanto, Joseph Nathanael
    Pratama, Kevin
    Lee, Doohee
    Choi, Kyu Sung
    Choi, Seung Hong
    Kim, Kyung-Min
    Kim, Min-Sung
    Kim, Jin Wook
    Kim, Yong Hwy
    Park, Sang Joon
    Park, Chul-Kee
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (03) : 871 - 881