Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning

被引:20
|
作者
Kang, Ho [1 ]
Witanto, Joseph Nathanael [2 ]
Pratama, Kevin [2 ]
Lee, Doohee [2 ]
Choi, Kyu Sung [3 ]
Choi, Seung Hong [3 ]
Kim, Kyung-Min [1 ]
Kim, Min-Sung [1 ]
Kim, Jin Wook [1 ]
Kim, Yong Hwy [1 ]
Park, Sang Joon [2 ,3 ]
Park, Chul-Kee [1 ]
机构
[1] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Neurosurg, Coll Med, Seoul, South Korea
[2] MEDICALIP Co Ltd, Res & Dev Ctr, Res & Sci Div, Seoul, South Korea
[3] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Radiol, Coll Med, Seoul, South Korea
关键词
GROWTH; GLIOMA;
D O I
10.1002/jmri.28332
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Accurate and rapid measurement of the MRI volume of meningiomas is essential in clinical practice to determine the growth rate of the tumor. Imperfect automation and disappointing performance for small meningiomas of previous automated volumetric tools limit their use in routine clinical practice. Purpose: To develop and validate a computational model for fully automated meningioma segmentation and volume measurement on contrast-enhanced MRI scans using deep learning. Study Type: Retrospective. Population: A total of 659 intracranial meningioma patients (median age, 59.0 years; interquartile range: 53.0-66.0 years) including 554 women and 105 men. Field Strength/Sequence: The 1.0 T, 1.5 T, and 3.0 T; three-dimensional, T-1-weighted gradient-echo imaging with contrast enhancement. Assessment: The tumors were manually segmented by two neurosurgeons, H.K. and C.-K.P., with 10 and 26 years of clinical experience, respectively, for use as the ground truth. Deep learning models based on U-Net and nnU-Net were trained using 459 subjects and tested for 100 patients from a single institution (internal validation set [IVS]) and 100 patients from other 24 institutions (external validation set [EVS]), respectively. The performance of each model was evaluated with the Sorensen-Dice similarity coefficient (DSC) compared with the ground truth. Statistical Tests: According to the normality of the data distribution verified by the Shapiro-Wilk test, variables with three or more categories were compared by the Kruskal-Wallis test with Dunn's post hoc analysis. Results: A two-dimensional (2D) nnU-Net showed the highest median DSCs of 0.922 and 0.893 for the IVS and EVS, respectively. The nnU-Nets achieved superior performance in meningioma segmentation than the U-Nets. The DSCs of the 2D nnU-Net for small meningiomas less than 1 cm(3) were 0.769 and 0.780 with the IVS and EVS, respectively. Data Conclusion: A fully automated and accurate volumetric measurement tool for meningioma with clinically applicable performance for small meningioma using nnU-Net was developed.
引用
收藏
页码:871 / 881
页数:11
相关论文
共 50 条
  • [1] Editorial for "Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning"
    Akasaka, Thai
    Okada, Tomohisa
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (03) : 882 - 883
  • [2] Fully automated segmentation and volumetric measurement of intracranial meningioma using deep learning
    Kang, Ho
    Witanto, Joseph N.
    Pratama, Kevin
    Lee, Doohee
    Choi, Kyu Sung
    Choi, Seung Hong
    Kim, Min-Sung
    Kim, Jin Wook
    Kim, Yong Hwy
    Park, Sang Joon
    Park, Chul-Kee
    CANCER RESEARCH, 2024, 84 (06)
  • [3] FULLY AUTOMATED SEGMENTATION AND VOLUMETRIC MEASUREMENT OF INTRACRANIAL MENINGIOMA USING DEEP LEARNING
    Kang, H.
    Witanto, J. N.
    Pratama, K.
    Lee, D.
    Choi, K.
    Choi, S.
    Kim, K.
    Kim, M.
    Kim, J.
    Kim, Y.
    Park, S.
    Park, C.
    NEURO-ONCOLOGY, 2022, 24
  • [4] A DEEP LEARNING ALGORITHM FOR FULLY AUTOMATED VOLUMETRIC MEASUREMENT OF MENINGIOMA BURDEN
    Cleveland, Mason
    Kim, Albert
    Patel, Jay
    McCall, Owen
    Liu, William
    Ahmed, Syed
    Bearce, Benjamin
    Chang, Ken
    De Sauvage, Magali
    Hoebel, Katharina
    Larson, Juliana
    Nayyar, Naema
    Pulido, Dagoberto
    Singh, Praveer
    Summers, Elizabeth
    Kalpathy-Cramer, Jayashree
    Plotkin, Scott R.
    Brastianos, Priscilla
    Bridge, Christopher
    Gerstner, Elizabeth
    NEURO-ONCOLOGY, 2023, 25
  • [5] Deep learning for the fully automated segmentation of the inner ear on MRI
    Akshayaa Vaidyanathan
    Marly F. J. A. van der Lubbe
    Ralph T. H. Leijenaar
    Marc van Hoof
    Fadila Zerka
    Benjamin Miraglio
    Sergey Primakov
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek
    Hammer Sebastiaan
    Patrick F. M. Dammeijer
    Vincent van Rompaey
    Henry C. Woodruff
    Wim Vos
    Seán Walsh
    Raymond van de Berg
    Philippe Lambin
    Scientific Reports, 11
  • [6] Deep learning for the fully automated segmentation of the inner ear on MRI
    Vaidyanathan, Akshayaa
    van der Lubbe, Marly F. J. A.
    Leijenaar, Ralph T. H.
    van Hoof, Marc
    Zerka, Fadila
    Miraglio, Benjamin
    Primakov, Sergey
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek, Monique A. L.
    Sebastiaan, Hammer
    Dammeijer, Patrick F. M.
    van Rompaey, Vincent
    Woodruff, Henry C.
    Vos, Wim
    Walsh, Sean
    van de Berg, Raymond
    Lambin, Philippe
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Kai Roman Laukamp
    Frank Thiele
    Georgy Shakirin
    David Zopfs
    Andrea Faymonville
    Marco Timmer
    David Maintz
    Michael Perkuhn
    Jan Borggrefe
    European Radiology, 2019, 29 : 124 - 132
  • [8] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Laukamp, Kai Roman
    Thiele, Frank
    Shakirin, Georgy
    Zopfs, David
    Faymonville, Andrea
    Timmer, Marco
    Maintz, David
    Perkuhn, Michael
    Borggrefe, Jan
    EUROPEAN RADIOLOGY, 2019, 29 (01) : 124 - 132
  • [9] Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning
    Rahil Shahzad
    Lenhard Pennig
    Lukas Goertz
    Frank Thiele
    Christoph Kabbasch
    Marc Schlamann
    Boris Krischek
    David Maintz
    Michael Perkuhn
    Jan Borggrefe
    Scientific Reports, 10
  • [10] Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning
    Shahzad, Rahil
    Pennig, Lenhard
    Goertz, Lukas
    Thiele, Frank
    Kabbasch, Christoph
    Schlamann, Marc
    Krischek, Boris
    Maintz, David
    Perkuhn, Michael
    Borggrefe, Jan
    SCIENTIFIC REPORTS, 2020, 10 (01)