Nonautonomous rogue wave solutions and numerical simulations for a three-dimensional nonlinear Schrodinger equation

被引:3
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonautonomous; Rogue wave; Rational solution; Nonlinear Schrodinger equation; Similarity transformation; VARIABLE-COEFFICIENTS; LIGHT; SOLITONS; OPTICS; MODEL;
D O I
10.1007/s11071-016-2806-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider nonautonomous rogue wave solutions of a -dimensional (3D) nonlinear Schrodinger equation (NLSE) with time-space modulation terms, the dispersion and the nonlinear coefficients engendering temporal dependency. Similarity transformation is used to convert the nonautonomous equation into autonomous NLSE; we obtain the multi-rogue wave solutions employing the generalized Darboux transformation. Particularly, the rogue wave solutions possess several free parameters. Then, the first-order and second-order nonautonomous rogue wave solutions are considered for the 3D NLSE with variable coefficients. At last, the numerical simulations on the evolution and collision of rogue wave solutions are performed to verify the prediction of the analytical formulations. The obtained nonautonomous rogue wave solutions can be used to describe the dynamics waves in the nonlinear optical fibers and Bose-Einstein condensates, respectively.
引用
下载
收藏
页码:1929 / 1938
页数:10
相关论文
共 50 条
  • [1] Nonautonomous rogue wave solutions and numerical simulations for a three-dimensional nonlinear Schrödinger equation
    Fajun Yu
    Nonlinear Dynamics, 2016, 85 : 1929 - 1938
  • [2] Rogue wave light bullets of the three-dimensional inhomogeneous nonlinear Schrodinger equation
    He, Jingsong
    Song, Yufeng
    Tiofack, C. G. L.
    Taki, M.
    PHOTONICS RESEARCH, 2021, 9 (04) : 643 - 648
  • [3] LONG-TIME SIMULATIONS OF ROGUE WAVE SOLUTIONS IN THE NONLINEAR SCHRODINGER EQUATION
    ZHENG, C. H. E. N. X., I
    TANG, S. H. A. O. Q. I. A. N. G.
    METHODS AND APPLICATIONS OF ANALYSIS, 2022, 29 (01) : 149 - 160
  • [4] Soliton and Rogue Wave Solution of the New Nonautonomous Nonlinear Schrodinger Equation
    Wang You-Ying
    He Jing-Song
    Li Yi-Shen
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (06) : 995 - 1004
  • [5] Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber
    Xie, Xi-Yang
    Tian, Bo
    Wang, Yu-Feng
    Sun, Ya
    Jiang, Yan
    ANNALS OF PHYSICS, 2015, 362 : 884 - 892
  • [6] Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrodinger equation
    Wen, Li-Li
    Zhang, Hai-Qiang
    NONLINEAR DYNAMICS, 2016, 86 (02) : 877 - 889
  • [7] Rogue-wave solutions of a three-component coupled nonlinear Schrodinger equation
    Zhao, Li-Chen
    Liu, Jie
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [8] Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation
    Wang, L. H.
    Porsezian, K.
    He, J. S.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [9] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [10] Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrodinger equation with external potentials
    Liu, Lei
    Tian, Bo
    Wu, Xiao-Yu
    Sun, Yan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 492 : 524 - 533