Nonautonomous rogue wave solutions and numerical simulations for a three-dimensional nonlinear Schrodinger equation

被引:3
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonautonomous; Rogue wave; Rational solution; Nonlinear Schrodinger equation; Similarity transformation; VARIABLE-COEFFICIENTS; LIGHT; SOLITONS; OPTICS; MODEL;
D O I
10.1007/s11071-016-2806-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider nonautonomous rogue wave solutions of a -dimensional (3D) nonlinear Schrodinger equation (NLSE) with time-space modulation terms, the dispersion and the nonlinear coefficients engendering temporal dependency. Similarity transformation is used to convert the nonautonomous equation into autonomous NLSE; we obtain the multi-rogue wave solutions employing the generalized Darboux transformation. Particularly, the rogue wave solutions possess several free parameters. Then, the first-order and second-order nonautonomous rogue wave solutions are considered for the 3D NLSE with variable coefficients. At last, the numerical simulations on the evolution and collision of rogue wave solutions are performed to verify the prediction of the analytical formulations. The obtained nonautonomous rogue wave solutions can be used to describe the dynamics waves in the nonlinear optical fibers and Bose-Einstein condensates, respectively.
引用
下载
收藏
页码:1929 / 1938
页数:10
相关论文
共 50 条
  • [41] A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
    Liu, Jian-Guo
    Osman, M. S.
    Wazwaz, Abdul-Majid
    OPTIK, 2019, 180 : 917 - 923
  • [42] Unstable higher modes of a three-dimensional nonlinear Schrodinger equation
    Edmundson, DE
    PHYSICAL REVIEW E, 1997, 55 (06): : 7636 - 7644
  • [43] General rogue wave solution to the discrete nonlinear Schrodinger equation
    Ohta, Yasuhiro
    Feng, Bao-Feng
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439
  • [44] Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation
    Bertola, Marco
    El, Gennady A.
    Tovbis, Alexander
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):
  • [45] Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients
    Tukur Abdulkadir Sulaiman
    Abdullahi Yusuf
    Marwan Alquran
    Nonlinear Dynamics, 2021, 104 : 639 - 648
  • [46] Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    Alquran, Marwan
    NONLINEAR DYNAMICS, 2021, 104 (01) : 639 - 648
  • [47] Analytical traveling wave and soliton solutions of the generalized nonautonomous nonlinear Schrodinger equation with an external potential
    Jin, H. Q.
    He, J. R.
    Cai, Z. B.
    Liang, J. C.
    Yi, L.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (12) : 1243 - 1250
  • [48] Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits
    Kedziora, David J.
    Ankiewicz, Adrian
    Akhmediev, Nail
    PHYSICAL REVIEW E, 2012, 85 (06)
  • [49] Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation
    Li, Bang-Qing
    Ma, Yu-Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [50] On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation
    Farag, Neveen G. A.
    Eltanboly, Ahmed H.
    EL-Azab, M. S.
    Obayya, S. S. A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021