Impact of Single-Particle Compressibility on the Fluid-Solid Phase Transition for Ionic Microgel Suspensions

被引:50
|
作者
Pelaez-Fernandez, M. [1 ]
Souslov, Anton [1 ]
Lyon, L. A. [2 ]
Goldbart, P. M. [1 ]
Fernandez-Nieves, A. [1 ]
机构
[1] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CHARGED COLLOIDS; MODEL SYSTEMS; SOFT SPHERES; BEHAVIOR; EQUILIBRIUM; SCATTERING; RHEOLOGY;
D O I
10.1103/PhysRevLett.114.098303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses. We measure the osmotic pressure pi of these suspensions and show that it is dominated by the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension phi, we can determine phi from pi, even at volume fractions so high that the microgel particles are compressed. We find that the width of the fluid-solid phase coexistence, measured using phi, is larger than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction. By calculating the dependence on phi of the mean volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid phase coexistence.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] 4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles
    Liu, Haihua
    Kwon, Oh-Hoon
    Tang, Jau
    Zewail, Ahmed H.
    NANO LETTERS, 2014, 14 (02) : 946 - 954
  • [32] MODELS FOR THE FLUID-SOLID INTERACTION FORCE FOR MULTIDIMENSIONAL SINGLE-PHASE FLOW WITHIN TUBE BUNDLES
    EBELINGKONING, DB
    ROBINSON, JT
    TODREAS, NE
    NUCLEAR ENGINEERING AND DESIGN, 1986, 91 (01) : 29 - 40
  • [33] MONTE-CARLO STUDIES OF FLUID-SOLID PHASE-TRANSITION IN LENNARD-JONES SYSTEM - COMMENT
    HANSEN, JP
    POLLOCK, EL
    JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (11): : 4581 - 4582
  • [34] Fluid-Solid Phase Transition in Molecular Layers Adsorbed on a Smooth Surface: A New Insight from Molecular Simulations
    Ustinov, Eugene
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41): : 23591 - 23599
  • [35] Abnormal effect of conjugated molecules on the fluid-solid phase transition of N2 and CO adsorbed on graphite
    Asada, H
    Kataoka, S
    Takemura, K
    Shimada, M
    Ikeda, A
    Hamada, N
    SURFACE SCIENCE, 1999, 443 (03) : 287 - 295
  • [36] MONTE-CARLO STUDIES OF FLUID-SOLID PHASE-TRANSITION IN LENNARD-JONES SYSTEM - REPLY
    RAVECHE, HJ
    MOUNTAIN, RD
    STREETT, WB
    JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (11): : 4582 - 4583
  • [37] CALCULATION OF PHASE-TRANSITION PARAMETERS OF LIQUID-SOLID BODY NEAR THE SINGLE COMPRESSIBILITY LINE
    MAGALINSKII, VB
    GLUSHKOV, NA
    ZHURNAL FIZICHESKOI KHIMII, 1979, 53 (04): : 914 - 918
  • [38] Single-Particle Properties of a Strongly Interacting Bose–Fermi Mixture Above the BEC Phase Transition Temperature
    D. Kharga
    D. Inotani
    R. Hanai
    Y. Ohashi
    Journal of Low Temperature Physics, 2017, 187 : 661 - 667
  • [39] Temperature-driven volume phase transition of a single stimuli-responsive microgel particle using optical tweezers
    Deepak K. Gupta
    D. Karthickeyan
    B. V. R. Tata
    T. R. Ravindran
    Colloid and Polymer Science, 2016, 294 : 1901 - 1908
  • [40] Parallel simulations for a 2D x/z two-phase flow fluid-solid particle model
    Zapata, M. Uh
    Van Bang, D. Pham
    Nguyen, K. D.
    COMPUTERS & FLUIDS, 2018, 173 : 103 - 110