Impact of Single-Particle Compressibility on the Fluid-Solid Phase Transition for Ionic Microgel Suspensions

被引:50
|
作者
Pelaez-Fernandez, M. [1 ]
Souslov, Anton [1 ]
Lyon, L. A. [2 ]
Goldbart, P. M. [1 ]
Fernandez-Nieves, A. [1 ]
机构
[1] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CHARGED COLLOIDS; MODEL SYSTEMS; SOFT SPHERES; BEHAVIOR; EQUILIBRIUM; SCATTERING; RHEOLOGY;
D O I
10.1103/PhysRevLett.114.098303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses. We measure the osmotic pressure pi of these suspensions and show that it is dominated by the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension phi, we can determine phi from pi, even at volume fractions so high that the microgel particles are compressed. We find that the width of the fluid-solid phase coexistence, measured using phi, is larger than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction. By calculating the dependence on phi of the mean volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid phase coexistence.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Characteristic features of convective heat release on the 'fluid-solid body' phase transition interface
    Semenov, V.Yu.
    Smorodin, A.I.
    Inzhenerno-Fizicheskii Zhurnal, 1993, 64 (05): : 619 - 629
  • [22] Note: Sound velocity of a soft sphere model near the fluid-solid phase transition
    Khrapak, Sergey A.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (12):
  • [23] Collective and single-particle dynamics near the isotropic-nematic phase transition
    Torre, R
    Tempestini, F
    Bartolini, P
    Righini, R
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (02): : 645 - 653
  • [24] Molecular species disturbing the fluid-solid phase transition of nitrogen adsorbed on graphite: Importance of aromaticity
    Yano, T
    Kamakura, S
    Ikeda, A
    Asada, H
    ADSORPTION SCIENCE & TECHNOLOGY, 2000, 18 (07) : 631 - 638
  • [25] Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
    Molinelli, S.
    Galli, D. E.
    Reatto, L.
    Motta, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 185 (1-2) : 39 - 58
  • [26] CAN A MODEL SYSTEM OF ROD-LIKE PARTICLES EXHIBIT BOTH A FLUID-FLUID AND A FLUID-SOLID PHASE TRANSITION
    WULF, A
    DEROCCO, AG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1969, (SEP): : CO59 - &
  • [27] MONTE-CARLO STUDIES OF FLUID-SOLID PHASE-TRANSITION IN LENNARD-JONES SYSTEM
    STREETT, WB
    RAVECHE, HJ
    MOUNTAIN, RD
    JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (05): : 1960 - 1969
  • [28] Rheological characteristics of cement-sodium silicate grout in its fluid-solid phase transition process
    Zhang, Lianzhen
    Xu, Han
    Zhang, Qingsong
    Chu, Yuntian
    Jun, Liu
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 362
  • [29] Measuring an interaction-induced topological phase transition via the single-particle density matrix
    Zheng, Jun-Hui
    Irsigler, Bernhard
    Jiang, Lijia
    Weitenberg, Christof
    Hofstetter, Walter
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [30] High-lying single-particle modes, chaos, correlational entropy, and doubling phase transition
    Stoyanov, C
    Zelevinsky, V
    PHYSICAL REVIEW C, 2004, 70 (01): : 014302 - 1