Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2

被引:88
|
作者
Hammerling, Dorit M. [1 ]
Michalak, Anna M. [1 ,2 ]
Kawa, S. Randolph [3 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
LIDAR;
D O I
10.1029/2011JD017015
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1 degrees latitude x 1.25 degrees longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one- day Level 3 maps reproduce the large- scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Advances in quantifying power plant CO2 emissions with OCO-2
    Nassar, Ray
    Mastrogiacomo, Jon-Paul
    Bateman-Hemphill, William
    McCracken, Callum
    MacDonald, Cameron G.
    Hill, Tim
    O'Dell, Christopher W.
    Kiel, Matthaus
    Crisp, David
    REMOTE SENSING OF ENVIRONMENT, 2021, 264 (264)
  • [32] Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements
    Wu, Lianghai
    Hasekamp, Otto
    Hu, Haili
    Landgraf, Jochen
    Butz, Andre
    aan de Brugh, Joost
    Aben, Ilse
    Pollard, Dave F.
    Griffith, David W. T.
    Feist, Dietrich G.
    Koshelev, Dmitry
    Hase, Frank
    Toon, Geoffrey C.
    Ohyama, Hirofumi
    Morino, Isamu
    Notholt, Justus
    Shiomi, Kei
    Iraci, Laura
    Schneider, Matthias
    de Maziere, Martine
    Sussmann, Ralf
    Kivi, Rigel
    Warneke, Thorsten
    Goo, Tae-Young
    Te, Yao
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (05) : 3111 - 3130
  • [33] Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories
    Hu, Yaqin
    Shi, Yusheng
    ATMOSPHERE, 2021, 12 (07)
  • [34] Estimates of Anthropogenic CO2 Emissions for Moscow and St. Petersburg Based on OCO-2 Satellite Measurements
    Timofeev, Yu. M.
    Berezin, I. A.
    Virolainen, Ya. A.
    Poberovskii, A. V.
    Makarova, M. V.
    Polyakov, A. V.
    ATMOSPHERIC AND OCEANIC OPTICS, 2020, 33 (06) : 656 - 660
  • [35] Estimates of Anthropogenic CO2 Emissions for Moscow and St. Petersburg Based on OCO-2 Satellite Measurements
    Yu. M. Timofeev
    I. A. Berezin
    Ya. A. Virolainen
    A. V. Poberovskii
    M. V. Makarova
    A. V. Polyakov
    Atmospheric and Oceanic Optics, 2020, 33 : 656 - 660
  • [36] Ocean-driven interannual variability in atmospheric CO2 quantified using OCO-2 observations and atmospheric transport simulations
    Guan, Yifan
    McKinley, Galen A.
    Fay, Amanda R.
    Doney, Scott C.
    Keppel-Aleks, Gretchen
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [37] OCO-2 Satellite-Imposed Constraints on Terrestrial Biospheric CO2 Fluxes Over South Asia
    Philip, Sajeev
    Johnson, Matthew S.
    Baker, David F.
    Basu, Sourish
    Tiwari, Yogesh K.
    Indira, Nuggehalli K.
    Ramonet, Michel
    Poulter, Benjamin
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (03)
  • [38] Retrieval anthropogenic CO2 emissions from OCO-2 and comparison with gridded emission inventories
    Jin, Chunlin
    Xue, Yong
    Yuan, Tao
    Zhao, Liang
    Jiang, Xingxing
    Sun, Yuxin
    Wu, Shuhui
    Wang, Xiangkai
    JOURNAL OF CLEANER PRODUCTION, 2024, 448
  • [39] Distribution of CO2 in Western Pacific, Studied Using Isotope Data Made in Taiwan, OCO-2 Satellite Retrievals, and CarbonTracker Products
    Laskar, Amzad H.
    Lin, Li-Ching
    Jiang, Xun
    Liang, Mao-Chang
    EARTH AND SPACE SCIENCE, 2018, 5 (11): : 827 - 842
  • [40] Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations: A Case Study in Northern China
    Wang, Songhan
    Zhang, Yongguang
    Hakkarainen, Janne
    Ju, Weimin
    Liu, Yongxue
    Jiang, Fei
    He, Wei
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (17) : 9462 - 9473