BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

被引:42
|
作者
Hmidi, Taoufik [1 ]
Mateu, Joan [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Kirchhoff vortices; rotating patches; bifurcation; STEADY-STATE SOLUTIONS; EULER EQUATIONS; 2; DIMENSIONS; V-STATES; VORTEX; CONFIGURATIONS; REGULARITY; STABILITY; DYNAMICS; WAVES;
D O I
10.3934/dcds.2016038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文
共 50 条
  • [41] Boundary Regularity of Rotating Vortex Patches
    Hmidi, Taoufik
    Mateu, Joan
    Verdera, Joan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (01) : 171 - 208
  • [42] The lowest stability and bifurcation in supercritical Taylor vortices
    Lin, Hau-Chieh
    Chen, Bi-Chu
    Chen, Yi-Fen
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (06) : 227 - 233
  • [43] Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices
    Correggi, Michele
    Pinsker, Florian
    Rougerie, Nicolas
    Yngvason, Jakob
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [44] ON BIFURCATION AND SYMMETRY IN BENARD CONVECTION AND TAYLOR VORTICES
    SHEARER, M
    WALTON, IC
    STUDIES IN APPLIED MATHEMATICS, 1981, 65 (01) : 85 - 93
  • [45] TAYLOR VORTICES WITH ECCENTRIC ROTATING CYLINDERS
    COLE, JA
    NATURE, 1967, 216 (5121) : 1200 - &
  • [46] A ROW OF COUNTER-ROTATING VORTICES
    MALLIER, R
    MASLOWE, SA
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (04): : 1074 - 1075
  • [47] Vortices and collective excitations in rotating BECs
    Wilkin, NK
    Gunn, JMF
    PHYSICA B, 2000, 284 : 23 - 24
  • [48] LABORATORY VORTICES IN ROTATING, SHEARED FLOW
    KAISER, JAC
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1973, 30 (05) : 950 - 953
  • [49] Local vortices in a differentially rotating flow
    V. A. Antonov
    A. S. Baranov
    B. P. Kondrat’ev
    Fluid Dynamics, 2005, 40 : 71 - 82
  • [50] Local Vortices in a Differentially Rotating Flow
    Antonov, V. A.
    Baranov, A. S.
    Kondrat'ev, B. P.
    FLUID DYNAMICS, 2005, 40 (01) : 71 - 82