BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

被引:42
|
作者
Hmidi, Taoufik [1 ]
Mateu, Joan [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Kirchhoff vortices; rotating patches; bifurcation; STEADY-STATE SOLUTIONS; EULER EQUATIONS; 2; DIMENSIONS; V-STATES; VORTEX; CONFIGURATIONS; REGULARITY; STABILITY; DYNAMICS; WAVES;
D O I
10.3934/dcds.2016038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文
共 50 条
  • [31] Routes to chaos from axisymmetric vertical vortices in a rotating cylinder
    Castano, D.
    Navarro, M. C.
    Herrero, H.
    APPLIED MATHEMATICAL MODELLING, 2018, 54 : 1 - 20
  • [32] From Point Vortices to Vortex Patches in Self-Similar Expanding Configurations
    Zbarsky, Samuel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (02) : 707 - 733
  • [33] A bifurcation-type result for Kirchhoff equations
    Liu, Jiu
    Liao, Jia-Feng
    Pan, Hui-Lan
    Tang, Chun-Lei
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 247 - 254
  • [34] An evaluation of a rotating Kirchhoff acoustic methodology
    Lyrintzis, AS
    Koutsavdis, EK
    Berezin, CR
    Visintainer, JA
    Pollack, MJ
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 1998, 43 (01) : 57 - 65
  • [35] From Point Vortices to Vortex Patches in Self-Similar Expanding Configurations
    Samuel Zbarsky
    Communications in Mathematical Physics, 2021, 388 : 707 - 733
  • [36] Control and stabilization of a rotating Kirchhoff plate
    Alexander l, Zuyev
    Lecture Notes in Control and Information Sciences, 2015, 458 : 169 - 213
  • [37] Hopf bifurcation from rotating waves and patterns in physical space
    Golubitsky, M
    LeBlanc, VG
    Melbourne, I
    JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (01) : 69 - 101
  • [38] Hopf Bifurcation from Rotating Waves and Patterns in Physical Space
    M. Golubitsky
    V. G. LeBlanc
    I. Melbourne
    Journal of Nonlinear Science, 2000, 10 : 69 - 101
  • [39] BIFURCATION OF SUPERPOSED ROTATING WAVES
    CHOSSAT, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (07): : 209 - 212
  • [40] Boundary Regularity of Rotating Vortex Patches
    Taoufik Hmidi
    Joan Mateu
    Joan Verdera
    Archive for Rational Mechanics and Analysis, 2013, 209 : 171 - 208