BIFURCATION OF ROTATING PATCHES FROM KIRCHHOFF VORTICES

被引:42
|
作者
Hmidi, Taoufik [1 ]
Mateu, Joan [2 ]
机构
[1] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Kirchhoff vortices; rotating patches; bifurcation; STEADY-STATE SOLUTIONS; EULER EQUATIONS; 2; DIMENSIONS; V-STATES; VORTEX; CONFIGURATIONS; REGULARITY; STABILITY; DYNAMICS; WAVES;
D O I
10.3934/dcds.2016038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of a new family of rotating patches for the planar Euler equations. We shall prove the existence of countable branches bifurcating from the ellipses at some implicit angular velocities. The proof uses bifurcation tools combined with the explicit parametrization of the ellipse through the exterior conformal mappings. The boundary is shown to belong to Holderian class.
引用
收藏
页码:5401 / 5422
页数:22
相关论文
共 50 条
  • [1] Degenerate bifurcation of the rotating patches
    Hmidi, Taoufik
    Mateu, Joan
    ADVANCES IN MATHEMATICS, 2016, 302 : 799 - 850
  • [2] Global Bifurcation of Rotating Vortex Patches
    Hassainia, Zineb
    Masmoudi, Nader
    Wheeler, Miles H.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (09) : 1933 - 1980
  • [3] Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices
    Dan Wang
    Yushu Chen
    M. Wiercigroch
    Qingjie Cao
    Applied Mathematics and Mechanics, 2016, 37 : 1251 - 1274
  • [4] Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices
    Dan WANG
    Yushu CHEN
    M.WIERCIGROCH
    Qingjie CAO
    AppliedMathematicsandMechanics(EnglishEdition), 2016, 37 (09) : 1251 - 1274
  • [5] Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices
    Wang, Dan
    Chen, Yushu
    Wiercigroch, M.
    Cao, Qingjie
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (09) : 1251 - 1274
  • [6] GENERALIZED KIRCHHOFF VORTICES
    POLVANI, LM
    FLIERL, GR
    PHYSICS OF FLUIDS, 1986, 29 (08) : 2376 - 2379
  • [7] BIFURCATION FROM ROTATING WAVES
    RENARDY, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1982, 79 (01) : 49 - 84
  • [8] The evolution of Kirchhoff elliptic vortices
    Mitchell, T. B.
    Rossi, L. F.
    PHYSICS OF FLUIDS, 2008, 20 (05)
  • [9] Bifurcation from Discrete Rotating Waves
    Jeroen S. W. Lamb
    Ian Melbourne
    Archive for Rational Mechanics and Analysis, 1999, 149 : 229 - 270
  • [10] Bifurcation from discrete rotating waves
    Lamb, JSW
    Melbourne, I
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (03) : 229 - 270