Classification of Human Activity by Using a Stacked Autoencoder

被引:0
|
作者
Badem, Hasan [1 ]
Caliskan, Abdullah [2 ]
Basturk, Alper [1 ]
Yuksel, Mehmet Emin [2 ]
机构
[1] Erciyes Univ, Bilgisayar Muhendisligi Bolumu, Kayseri, Turkey
[2] Erciyes Univ, Biyomed Muhendisligi Bolumu, Kayseri, Turkey
关键词
Deep Neural Network; Stacked Autoencoder; Softmax; Human Activity Recognition;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the application of a deep neural network architecture that consists of stackted autoencoder with two autoencoders and a softmax layer for the purpose of human activity classification. Th performance of the proposed architecture is tested on a commonly used data set known as Human Activity Recognition Using Smartphones. It is observed that the proposed method yields better classification results than the representative state-of-the-art methods provided that the parameters of the deep network are suitably optimized.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Deep text clustering using stacked AutoEncoder
    Hosseini, Soodeh
    Varzaneh, Zahra Asghari
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 10861 - 10881
  • [42] Extract Features Using Stacked Denoised Autoencoder
    Gao, Yushu
    Zhu, Lin
    Zhu, Hao-Dong
    Gan, Yong
    Shang, Li
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 10 - 14
  • [43] Deep text clustering using stacked AutoEncoder
    Soodeh Hosseini
    Zahra Asghari Varzaneh
    Multimedia Tools and Applications, 2022, 81 : 10861 - 10881
  • [44] Classification of lemon quality using hybrid model based on Stacked AutoEncoder and convolutional neural network
    Yilmaz, Esra Kavalci
    Adem, Kemal
    Kilicarslan, Serhat
    Aydin, Hatice Aktas
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (06) : 1655 - 1667
  • [45] Epileptic EEG signal classification using an improved VMD-based convolutional stacked autoencoder
    Parija, Sebamai
    Dash, Pradipta Kishore
    Bisoi, Ranjeeta
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [46] Classification of lemon quality using hybrid model based on Stacked AutoEncoder and convolutional neural network
    Esra Kavalcı Yılmaz
    Kemal Adem
    Serhat Kılıçarslan
    Hatice Aktaş Aydın
    European Food Research and Technology, 2023, 249 : 1655 - 1667
  • [47] Spectral-spatial classification of hyperspectral images using trilateral filter and stacked sparse autoencoder
    Zhao, Chunhui
    Wan, Xiaoqing
    Zhao, Genping
    Yan, Yiming
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [48] Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images
    Xing, Chen
    Ma, Li
    Yang, Xiaoquan
    JOURNAL OF SENSORS, 2016, 2016
  • [49] Classification of PolSAR Images Based on Adaptive Nonlocal Stacked Sparse Autoencoder
    Hu, Yuanyuan
    Fan, Jianchao
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (07) : 1050 - 1054
  • [50] Heart sound classification with signal instant energy and stacked autoencoder network
    Deperlioglu, Omer
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 64