Combining Multi-Layer Perceptron and K-means for data clustering with background knowledge

被引:0
|
作者
Guan, Donghai [1 ]
Yuan, Weiwei [1 ]
Lee, Young-Koo [1 ]
Gavrilov, Andrey [1 ]
Lee, Sungyoung [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Engn, Seoul, South Korea
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES | 2007年 / 2卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. To make use of this information, in this paper, we develop a new clustering method "MLP-KMEANS" by combining Multi-Layer Perceptron and K-means. We test our method on several data sets with partial constrains available. Experimental results show that our method can effectively improve clustering accuracy by utilizing available information.
引用
收藏
页码:1220 / +
页数:3
相关论文
共 50 条
  • [1] Multi-layer Topology Preserving Mapping for K-Means Clustering
    Wu, Ying
    Doyle, Thomas K.
    Fyfe, Colin
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 84 - +
  • [2] Combining PSO and k-means to Enhance Data Clustering
    Ahmadyfard, Alireza
    Modares, Hamidreza
    2008 INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS, VOLS 1 AND 2, 2008, : 688 - 691
  • [3] COMBINING MISSING DATA IMPUTATION AND PATTERN CLASSIFICATION IN A MULTI-LAYER PERCEPTRON
    Sancho-Gomez, Jose-Luis
    Garcia-Laencina, Pedro J.
    Figueiras-Vidal, Anibal R.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2009, 15 (04): : 539 - 553
  • [4] Clustering Algorithm Combining CPSO with K-Means
    Gu, Chunqin
    Tao, Qian
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 749 - 755
  • [5] Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk
    Teoh, T. T.
    Zhang, Yue
    Nguwi, Y. Y.
    Elovici, Yuval
    Ng, W. L.
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [6] Two-step clustering for data reduction combining DBSCAN and k-means clustering
    Kremers, Bart J. J.
    Citrin, Jonathan
    Ho, Aaron
    van der Plassche, Karel L.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2023, 63 (5-6)
  • [7] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [8] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [9] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [10] Combining K-means and Particle Swarm Optimization for Dynamic Data Clustering Problems
    Kao, Yucheng
    Lee, Szu-Yuan
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 757 - 761